-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathA_String_Task.cpp
81 lines (70 loc) · 1.84 KB
/
A_String_Task.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
#include<bits/stdc++.h>
using namespace std;
#define gc getchar_unlocked
#define fo(i,n) for(int i=0;i<n;i++)
#define Fo(i,k,n) for(int i=k;k<n?i<n:i>n;k<n?i+=1:i-=1)
#define ll long long
#define si(x) scanf("%d",&x)
#define sl(x) scanf("%lld",&x)
#define ss(s) scanf("%s",s)
#define pi(x) printf("%d\n",x)
#define pl(x) printf("%lld\n",x)
#define ps(s) printf("%s\n",s)
#define deb(x) cout << #x << "=" << x << endl
#define deb2(x, y) cout << #x << "=" << x << "," << #y << "=" << y << endl
#define all(x) x.begin(), x.end()
#define clr(x) memset(x, 0, sizeof(x))
#define sortall(x) sort(all(x))
#define PI 3.1415926535897932384626
typedef pair<int, int> pii;
typedef vector<int> vi;
typedef vector<pii> vpii;
typedef vector<vi> vvi;
//=======================
mt19937_64 rang(chrono::high_resolution_clock::now().time_since_epoch().count());
int rng(int lim) {
uniform_int_distribution<int> uid(0,lim-1);
return uid(rang);
}
const int mod = 1000000007;
const int N = 2e6+13, M = N;
int mpow(int base, int exp);
//=======================
vi g[N];
int a[N];
int n, m, k;
//=======================
void solve() {
string s;
cin>>s;
transform(s.begin(), s.end(), s.begin(), ::tolower);
fo(i,s.size()){
if(s[i]=='a'||s[i]=='e'||s[i]=='i'||s[i]=='o'||s[i]=='u'||s[i]=='y')
{
s.erase(s.begin()+i);
i--;
}
}
fo(i,s.size()){
cout<<"."<<s[i];
}
cout<<endl;
//deb(s);
//cout<<s<<endl;
}
int main() {
ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0);
srand(chrono::high_resolution_clock::now().time_since_epoch().count());
solve();
return 0;
}
int mpow(int base, int exp) {
base %= mod;
int result = 1;
while (exp > 0) {
if (exp & 1) result = ((ll)result * base) % mod;
base = ((ll)base * base) % mod;
exp >>= 1;
}
return result;
}