-
Notifications
You must be signed in to change notification settings - Fork 683
/
lib.rs
2038 lines (1838 loc) · 62.1 KB
/
lib.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright (C) Parity Technologies (UK) Ltd.
// This file is part of Polkadot.
// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Polkadot. If not, see <http://www.gnu.org/licenses/>.
//! Implements the `CandidateBackingSubsystem`.
//!
//! This subsystem maintains the entire responsibility of tracking parachain
//! candidates which can be backed, as well as the issuance of statements
//! about candidates when run on a validator node.
//!
//! There are two types of statements: `Seconded` and `Valid`.
//! `Seconded` implies `Valid`, and nothing should be stated as
//! `Valid` unless its already been `Seconded`.
//!
//! Validators may only second candidates which fall under their own group
//! assignment, and they may only second one candidate per depth per active leaf.
//! Candidates which are stated as either `Second` or `Valid` by a majority of the
//! assigned group of validators may be backed on-chain and proceed to the availability
//! stage.
//!
//! Depth is a concept relating to asynchronous backing, by which validators
//! short sub-chains of candidates are backed and extended off-chain, and then placed
//! asynchronously into blocks of the relay chain as those are authored and as the
//! relay-chain state becomes ready for them. Asynchronous backing allows parachains to
//! grow mostly independently from the state of the relay chain, which gives more time for
//! parachains to be validated and thereby increases performance.
//!
//! Most of the work of asynchronous backing is handled by the Prospective Parachains
//! subsystem. The 'depth' of a parachain block with respect to a relay chain block is
//! a measure of how many parachain blocks are between the most recent included parachain block
//! in the post-state of the relay-chain block and the candidate. For instance,
//! a candidate that descends directly from the most recent parachain block in the relay-chain
//! state has depth 0. The child of that candidate would have depth 1. And so on.
//!
//! The candidate backing subsystem keeps track of a set of 'active leaves' which are the
//! most recent blocks in the relay-chain (which is in fact a tree) which could be built
//! upon. Depth is always measured against active leaves, and the valid relay-parent that
//! each candidate can have is determined by the active leaves. The Prospective Parachains
//! subsystem enforces that the relay-parent increases monotonically, so that logic
//! is not handled here. By communicating with the Prospective Parachains subsystem,
//! this subsystem extrapolates an "implicit view" from the set of currently active leaves,
//! which determines the set of all recent relay-chain block hashes which could be relay-parents
//! for candidates backed in children of the active leaves.
//!
//! In fact, this subsystem relies on the Statement Distribution subsystem to prevent spam
//! by enforcing the rule that each validator may second at most one candidate per depth per
//! active leaf. This bounds the number of candidates that the system needs to consider and
//! is not handled within this subsystem, except for candidates seconded locally.
//!
//! This subsystem also handles relay-chain heads which don't support asynchronous backing.
//! For such active leaves, the only valid relay-parent is the leaf hash itself and the only
//! allowed depth is 0.
#![deny(unused_crate_dependencies)]
use std::{
collections::{BTreeMap, HashMap, HashSet},
sync::Arc,
};
use bitvec::vec::BitVec;
use futures::{
channel::{mpsc, oneshot},
future::BoxFuture,
stream::FuturesOrdered,
FutureExt, SinkExt, StreamExt, TryFutureExt,
};
use error::{Error, FatalResult};
use polkadot_node_primitives::{
AvailableData, InvalidCandidate, PoV, SignedFullStatementWithPVD, StatementWithPVD,
ValidationResult,
};
use polkadot_node_subsystem::{
messages::{
AvailabilityDistributionMessage, AvailabilityStoreMessage, CanSecondRequest,
CandidateBackingMessage, CandidateValidationMessage, CollatorProtocolMessage,
HypotheticalCandidate, HypotheticalFrontierRequest, IntroduceCandidateRequest,
ProspectiveParachainsMessage, ProvisionableData, ProvisionerMessage, RuntimeApiMessage,
RuntimeApiRequest, StatementDistributionMessage, StoreAvailableDataError,
},
overseer, ActiveLeavesUpdate, FromOrchestra, OverseerSignal, SpawnedSubsystem, SubsystemError,
};
use polkadot_node_subsystem_util::{
self as util,
backing_implicit_view::{FetchError as ImplicitViewFetchError, View as ImplicitView},
executor_params_at_relay_parent, request_from_runtime, request_session_index_for_child,
request_validator_groups, request_validators,
runtime::{
self, prospective_parachains_mode, request_min_backing_votes, ProspectiveParachainsMode,
},
Validator,
};
use polkadot_primitives::{
BackedCandidate, CandidateCommitments, CandidateHash, CandidateReceipt,
CommittedCandidateReceipt, CoreIndex, CoreState, ExecutorParams, Hash, Id as ParaId,
PersistedValidationData, PvfExecTimeoutKind, SigningContext, ValidationCode, ValidatorId,
ValidatorIndex, ValidatorSignature, ValidityAttestation,
};
use sp_keystore::KeystorePtr;
use statement_table::{
generic::AttestedCandidate as TableAttestedCandidate,
v2::{
SignedStatement as TableSignedStatement, Statement as TableStatement,
Summary as TableSummary,
},
Config as TableConfig, Context as TableContextTrait, Table,
};
mod error;
mod metrics;
use self::metrics::Metrics;
#[cfg(test)]
mod tests;
const LOG_TARGET: &str = "parachain::candidate-backing";
/// PoV data to validate.
enum PoVData {
/// Already available (from candidate selection).
Ready(Arc<PoV>),
/// Needs to be fetched from validator (we are checking a signed statement).
FetchFromValidator {
from_validator: ValidatorIndex,
candidate_hash: CandidateHash,
pov_hash: Hash,
},
}
enum ValidatedCandidateCommand {
// We were instructed to second the candidate that has been already validated.
Second(BackgroundValidationResult),
// We were instructed to validate the candidate.
Attest(BackgroundValidationResult),
// We were not able to `Attest` because backing validator did not send us the PoV.
AttestNoPoV(CandidateHash),
}
impl std::fmt::Debug for ValidatedCandidateCommand {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
let candidate_hash = self.candidate_hash();
match *self {
ValidatedCandidateCommand::Second(_) => write!(f, "Second({})", candidate_hash),
ValidatedCandidateCommand::Attest(_) => write!(f, "Attest({})", candidate_hash),
ValidatedCandidateCommand::AttestNoPoV(_) => write!(f, "Attest({})", candidate_hash),
}
}
}
impl ValidatedCandidateCommand {
fn candidate_hash(&self) -> CandidateHash {
match *self {
ValidatedCandidateCommand::Second(Ok(ref outputs)) => outputs.candidate.hash(),
ValidatedCandidateCommand::Second(Err(ref candidate)) => candidate.hash(),
ValidatedCandidateCommand::Attest(Ok(ref outputs)) => outputs.candidate.hash(),
ValidatedCandidateCommand::Attest(Err(ref candidate)) => candidate.hash(),
ValidatedCandidateCommand::AttestNoPoV(candidate_hash) => candidate_hash,
}
}
}
/// The candidate backing subsystem.
pub struct CandidateBackingSubsystem {
keystore: KeystorePtr,
metrics: Metrics,
}
impl CandidateBackingSubsystem {
/// Create a new instance of the `CandidateBackingSubsystem`.
pub fn new(keystore: KeystorePtr, metrics: Metrics) -> Self {
Self { keystore, metrics }
}
}
#[overseer::subsystem(CandidateBacking, error = SubsystemError, prefix = self::overseer)]
impl<Context> CandidateBackingSubsystem
where
Context: Send + Sync,
{
fn start(self, ctx: Context) -> SpawnedSubsystem {
let future = async move {
run(ctx, self.keystore, self.metrics)
.await
.map_err(|e| SubsystemError::with_origin("candidate-backing", e))
}
.boxed();
SpawnedSubsystem { name: "candidate-backing-subsystem", future }
}
}
struct PerRelayParentState {
prospective_parachains_mode: ProspectiveParachainsMode,
/// The hash of the relay parent on top of which this job is doing it's work.
parent: Hash,
/// The `ParaId` assigned to the local validator at this relay parent.
assignment: Option<ParaId>,
/// The candidates that are backed by enough validators in their group, by hash.
backed: HashSet<CandidateHash>,
/// The table of candidates and statements under this relay-parent.
table: Table<TableContext>,
/// The table context, including groups.
table_context: TableContext,
/// We issued `Seconded` or `Valid` statements on about these candidates.
issued_statements: HashSet<CandidateHash>,
/// These candidates are undergoing validation in the background.
awaiting_validation: HashSet<CandidateHash>,
/// Data needed for retrying in case of `ValidatedCandidateCommand::AttestNoPoV`.
fallbacks: HashMap<CandidateHash, AttestingData>,
/// The minimum backing votes threshold.
minimum_backing_votes: u32,
}
struct PerCandidateState {
persisted_validation_data: PersistedValidationData,
seconded_locally: bool,
para_id: ParaId,
relay_parent: Hash,
}
struct ActiveLeafState {
prospective_parachains_mode: ProspectiveParachainsMode,
/// The candidates seconded at various depths under this active
/// leaf with respect to parachain id. A candidate can only be
/// seconded when its hypothetical frontier under every active leaf
/// has an empty entry in this map.
///
/// When prospective parachains are disabled, the only depth
/// which is allowed is 0.
seconded_at_depth: HashMap<ParaId, BTreeMap<usize, CandidateHash>>,
}
/// The state of the subsystem.
struct State {
/// The utility for managing the implicit and explicit views in a consistent way.
///
/// We only feed leaves which have prospective parachains enabled to this view.
implicit_view: ImplicitView,
/// State tracked for all active leaves, whether or not they have prospective parachains
/// enabled.
per_leaf: HashMap<Hash, ActiveLeafState>,
/// State tracked for all relay-parents backing work is ongoing for. This includes
/// all active leaves.
///
/// relay-parents fall into one of 3 categories.
/// 1. active leaves which do support prospective parachains
/// 2. active leaves which do not support prospective parachains
/// 3. relay-chain blocks which are ancestors of an active leaf and do support prospective
/// parachains.
///
/// Relay-chain blocks which don't support prospective parachains are
/// never included in the fragment trees of active leaves which do.
///
/// While it would be technically possible to support such leaves in
/// fragment trees, it only benefits the transition period when asynchronous
/// backing is being enabled and complicates code complexity.
per_relay_parent: HashMap<Hash, PerRelayParentState>,
/// State tracked for all candidates relevant to the implicit view.
///
/// This is guaranteed to have an entry for each candidate with a relay parent in the implicit
/// or explicit view for which a `Seconded` statement has been successfully imported.
per_candidate: HashMap<CandidateHash, PerCandidateState>,
/// A cloneable sender which is dispatched to background candidate validation tasks to inform
/// the main task of the result.
background_validation_tx: mpsc::Sender<(Hash, ValidatedCandidateCommand)>,
/// The handle to the keystore used for signing.
keystore: KeystorePtr,
}
impl State {
fn new(
background_validation_tx: mpsc::Sender<(Hash, ValidatedCandidateCommand)>,
keystore: KeystorePtr,
) -> Self {
State {
implicit_view: ImplicitView::default(),
per_leaf: HashMap::default(),
per_relay_parent: HashMap::default(),
per_candidate: HashMap::new(),
background_validation_tx,
keystore,
}
}
}
#[overseer::contextbounds(CandidateBacking, prefix = self::overseer)]
async fn run<Context>(
mut ctx: Context,
keystore: KeystorePtr,
metrics: Metrics,
) -> FatalResult<()> {
let (background_validation_tx, mut background_validation_rx) = mpsc::channel(16);
let mut state = State::new(background_validation_tx, keystore);
loop {
let res =
run_iteration(&mut ctx, &mut state, &metrics, &mut background_validation_rx).await;
match res {
Ok(()) => break,
Err(e) => crate::error::log_error(Err(e))?,
}
}
Ok(())
}
#[overseer::contextbounds(CandidateBacking, prefix = self::overseer)]
async fn run_iteration<Context>(
ctx: &mut Context,
state: &mut State,
metrics: &Metrics,
background_validation_rx: &mut mpsc::Receiver<(Hash, ValidatedCandidateCommand)>,
) -> Result<(), Error> {
loop {
futures::select!(
validated_command = background_validation_rx.next().fuse() => {
if let Some((relay_parent, command)) = validated_command {
handle_validated_candidate_command(
&mut *ctx,
state,
relay_parent,
command,
metrics,
).await?;
} else {
panic!("background_validation_tx always alive at this point; qed");
}
}
from_overseer = ctx.recv().fuse() => {
match from_overseer.map_err(Error::OverseerExited)? {
FromOrchestra::Signal(OverseerSignal::ActiveLeaves(update)) => {
handle_active_leaves_update(
&mut *ctx,
update,
state,
).await?;
}
FromOrchestra::Signal(OverseerSignal::BlockFinalized(..)) => {}
FromOrchestra::Signal(OverseerSignal::Conclude) => return Ok(()),
FromOrchestra::Communication { msg } => {
handle_communication(&mut *ctx, state, msg, metrics).await?;
}
}
}
)
}
}
/// In case a backing validator does not provide a PoV, we need to retry with other backing
/// validators.
///
/// This is the data needed to accomplish this. Basically all the data needed for spawning a
/// validation job and a list of backing validators, we can try.
#[derive(Clone)]
struct AttestingData {
/// The candidate to attest.
candidate: CandidateReceipt,
/// Hash of the PoV we need to fetch.
pov_hash: Hash,
/// Validator we are currently trying to get the PoV from.
from_validator: ValidatorIndex,
/// Other backing validators we can try in case `from_validator` failed.
backing: Vec<ValidatorIndex>,
}
#[derive(Default)]
struct TableContext {
validator: Option<Validator>,
groups: HashMap<ParaId, Vec<ValidatorIndex>>,
validators: Vec<ValidatorId>,
}
impl TableContextTrait for TableContext {
type AuthorityId = ValidatorIndex;
type Digest = CandidateHash;
type GroupId = ParaId;
type Signature = ValidatorSignature;
type Candidate = CommittedCandidateReceipt;
fn candidate_digest(candidate: &CommittedCandidateReceipt) -> CandidateHash {
candidate.hash()
}
fn candidate_group(candidate: &CommittedCandidateReceipt) -> ParaId {
candidate.descriptor().para_id
}
fn is_member_of(&self, authority: &ValidatorIndex, group: &ParaId) -> bool {
self.groups.get(group).map_or(false, |g| g.iter().any(|a| a == authority))
}
fn get_group_size(&self, group: &ParaId) -> Option<usize> {
self.groups.get(group).map(|g| g.len())
}
}
// It looks like it's not possible to do an `impl From` given the current state of
// the code. So this does the necessary conversion.
fn primitive_statement_to_table(s: &SignedFullStatementWithPVD) -> TableSignedStatement {
let statement = match s.payload() {
StatementWithPVD::Seconded(c, _) => TableStatement::Seconded(c.clone()),
StatementWithPVD::Valid(h) => TableStatement::Valid(*h),
};
TableSignedStatement {
statement,
signature: s.signature().clone(),
sender: s.validator_index(),
}
}
fn table_attested_to_backed(
attested: TableAttestedCandidate<
ParaId,
CommittedCandidateReceipt,
ValidatorIndex,
ValidatorSignature,
>,
table_context: &TableContext,
) -> Option<BackedCandidate> {
let TableAttestedCandidate { candidate, validity_votes, group_id: para_id } = attested;
let (ids, validity_votes): (Vec<_>, Vec<ValidityAttestation>) =
validity_votes.into_iter().map(|(id, vote)| (id, vote.into())).unzip();
let group = table_context.groups.get(¶_id)?;
let mut validator_indices = BitVec::with_capacity(group.len());
validator_indices.resize(group.len(), false);
// The order of the validity votes in the backed candidate must match
// the order of bits set in the bitfield, which is not necessarily
// the order of the `validity_votes` we got from the table.
let mut vote_positions = Vec::with_capacity(validity_votes.len());
for (orig_idx, id) in ids.iter().enumerate() {
if let Some(position) = group.iter().position(|x| x == id) {
validator_indices.set(position, true);
vote_positions.push((orig_idx, position));
} else {
gum::warn!(
target: LOG_TARGET,
"Logic error: Validity vote from table does not correspond to group",
);
return None
}
}
vote_positions.sort_by_key(|(_orig, pos_in_group)| *pos_in_group);
Some(BackedCandidate {
candidate,
validity_votes: vote_positions
.into_iter()
.map(|(pos_in_votes, _pos_in_group)| validity_votes[pos_in_votes].clone())
.collect(),
validator_indices,
})
}
async fn store_available_data(
sender: &mut impl overseer::CandidateBackingSenderTrait,
n_validators: u32,
candidate_hash: CandidateHash,
available_data: AvailableData,
expected_erasure_root: Hash,
) -> Result<(), Error> {
let (tx, rx) = oneshot::channel();
// Important: the `av-store` subsystem will check if the erasure root of the `available_data`
// matches `expected_erasure_root` which was provided by the collator in the `CandidateReceipt`.
// This check is consensus critical and the `backing` subsystem relies on it for ensuring
// candidate validity.
sender
.send_message(AvailabilityStoreMessage::StoreAvailableData {
candidate_hash,
n_validators,
available_data,
expected_erasure_root,
tx,
})
.await;
rx.await
.map_err(Error::StoreAvailableDataChannel)?
.map_err(Error::StoreAvailableData)
}
// Make a `PoV` available.
//
// This calls the AV store to write the available data to storage. The AV store also checks the
// erasure root matches the `expected_erasure_root`.
// This returns `Err()` on erasure root mismatch or due to any AV store subsystem error.
//
// Otherwise, it returns `Ok(())`.
async fn make_pov_available(
sender: &mut impl overseer::CandidateBackingSenderTrait,
n_validators: usize,
pov: Arc<PoV>,
candidate_hash: CandidateHash,
validation_data: PersistedValidationData,
expected_erasure_root: Hash,
) -> Result<(), Error> {
store_available_data(
sender,
n_validators as u32,
candidate_hash,
AvailableData { pov, validation_data },
expected_erasure_root,
)
.await
}
async fn request_pov(
sender: &mut impl overseer::CandidateBackingSenderTrait,
relay_parent: Hash,
from_validator: ValidatorIndex,
para_id: ParaId,
candidate_hash: CandidateHash,
pov_hash: Hash,
) -> Result<Arc<PoV>, Error> {
let (tx, rx) = oneshot::channel();
sender
.send_message(AvailabilityDistributionMessage::FetchPoV {
relay_parent,
from_validator,
para_id,
candidate_hash,
pov_hash,
tx,
})
.await;
let pov = rx.await.map_err(|_| Error::FetchPoV)?;
Ok(Arc::new(pov))
}
async fn request_candidate_validation(
sender: &mut impl overseer::CandidateBackingSenderTrait,
pvd: PersistedValidationData,
code: ValidationCode,
candidate_receipt: CandidateReceipt,
pov: Arc<PoV>,
executor_params: ExecutorParams,
) -> Result<ValidationResult, Error> {
let (tx, rx) = oneshot::channel();
sender
.send_message(CandidateValidationMessage::ValidateFromExhaustive(
pvd,
code,
candidate_receipt,
pov,
executor_params,
PvfExecTimeoutKind::Backing,
tx,
))
.await;
match rx.await {
Ok(Ok(validation_result)) => Ok(validation_result),
Ok(Err(err)) => Err(Error::ValidationFailed(err)),
Err(err) => Err(Error::ValidateFromExhaustive(err)),
}
}
struct BackgroundValidationOutputs {
candidate: CandidateReceipt,
commitments: CandidateCommitments,
persisted_validation_data: PersistedValidationData,
}
type BackgroundValidationResult = Result<BackgroundValidationOutputs, CandidateReceipt>;
struct BackgroundValidationParams<S: overseer::CandidateBackingSenderTrait, F> {
sender: S,
tx_command: mpsc::Sender<(Hash, ValidatedCandidateCommand)>,
candidate: CandidateReceipt,
relay_parent: Hash,
persisted_validation_data: PersistedValidationData,
pov: PoVData,
n_validators: usize,
make_command: F,
}
async fn validate_and_make_available(
params: BackgroundValidationParams<
impl overseer::CandidateBackingSenderTrait,
impl Fn(BackgroundValidationResult) -> ValidatedCandidateCommand + Sync,
>,
) -> Result<(), Error> {
let BackgroundValidationParams {
mut sender,
mut tx_command,
candidate,
relay_parent,
persisted_validation_data,
pov,
n_validators,
make_command,
} = params;
let validation_code = {
let validation_code_hash = candidate.descriptor().validation_code_hash;
let (tx, rx) = oneshot::channel();
sender
.send_message(RuntimeApiMessage::Request(
relay_parent,
RuntimeApiRequest::ValidationCodeByHash(validation_code_hash, tx),
))
.await;
let code = rx.await.map_err(Error::RuntimeApiUnavailable)?;
match code {
Err(e) => return Err(Error::FetchValidationCode(validation_code_hash, e)),
Ok(None) => return Err(Error::NoValidationCode(validation_code_hash)),
Ok(Some(c)) => c,
}
};
let executor_params = match executor_params_at_relay_parent(relay_parent, &mut sender).await {
Ok(ep) => ep,
Err(e) => return Err(Error::UtilError(e)),
};
let pov = match pov {
PoVData::Ready(pov) => pov,
PoVData::FetchFromValidator { from_validator, candidate_hash, pov_hash } =>
match request_pov(
&mut sender,
relay_parent,
from_validator,
candidate.descriptor.para_id,
candidate_hash,
pov_hash,
)
.await
{
Err(Error::FetchPoV) => {
tx_command
.send((
relay_parent,
ValidatedCandidateCommand::AttestNoPoV(candidate.hash()),
))
.await
.map_err(Error::BackgroundValidationMpsc)?;
return Ok(())
},
Err(err) => return Err(err),
Ok(pov) => pov,
},
};
let v = {
request_candidate_validation(
&mut sender,
persisted_validation_data,
validation_code,
candidate.clone(),
pov.clone(),
executor_params,
)
.await?
};
let res = match v {
ValidationResult::Valid(commitments, validation_data) => {
gum::debug!(
target: LOG_TARGET,
candidate_hash = ?candidate.hash(),
"Validation successful",
);
let erasure_valid = make_pov_available(
&mut sender,
n_validators,
pov.clone(),
candidate.hash(),
validation_data.clone(),
candidate.descriptor.erasure_root,
)
.await;
match erasure_valid {
Ok(()) => Ok(BackgroundValidationOutputs {
candidate,
commitments,
persisted_validation_data: validation_data,
}),
Err(Error::StoreAvailableData(StoreAvailableDataError::InvalidErasureRoot)) => {
gum::debug!(
target: LOG_TARGET,
candidate_hash = ?candidate.hash(),
actual_commitments = ?commitments,
"Erasure root doesn't match the announced by the candidate receipt",
);
Err(candidate)
},
// Bubble up any other error.
Err(e) => return Err(e),
}
},
ValidationResult::Invalid(InvalidCandidate::CommitmentsHashMismatch) => {
// If validation produces a new set of commitments, we vote the candidate as invalid.
gum::warn!(
target: LOG_TARGET,
candidate_hash = ?candidate.hash(),
"Validation yielded different commitments",
);
Err(candidate)
},
ValidationResult::Invalid(reason) => {
gum::warn!(
target: LOG_TARGET,
candidate_hash = ?candidate.hash(),
reason = ?reason,
"Validation yielded an invalid candidate",
);
Err(candidate)
},
};
tx_command.send((relay_parent, make_command(res))).await.map_err(Into::into)
}
#[overseer::contextbounds(CandidateBacking, prefix = self::overseer)]
async fn handle_communication<Context>(
ctx: &mut Context,
state: &mut State,
message: CandidateBackingMessage,
metrics: &Metrics,
) -> Result<(), Error> {
match message {
CandidateBackingMessage::Second(_relay_parent, candidate, pvd, pov) => {
handle_second_message(ctx, state, candidate, pvd, pov, metrics).await?;
},
CandidateBackingMessage::Statement(relay_parent, statement) => {
handle_statement_message(ctx, state, relay_parent, statement, metrics).await?;
},
CandidateBackingMessage::GetBackedCandidates(requested_candidates, tx) =>
handle_get_backed_candidates_message(state, requested_candidates, tx, metrics)?,
CandidateBackingMessage::CanSecond(request, tx) =>
handle_can_second_request(ctx, state, request, tx).await,
}
Ok(())
}
#[overseer::contextbounds(CandidateBacking, prefix = self::overseer)]
async fn handle_active_leaves_update<Context>(
ctx: &mut Context,
update: ActiveLeavesUpdate,
state: &mut State,
) -> Result<(), Error> {
enum LeafHasProspectiveParachains {
Enabled(Result<ProspectiveParachainsMode, ImplicitViewFetchError>),
Disabled,
}
// Activate in implicit view before deactivate, per the docs
// on ImplicitView, this is more efficient.
let res = if let Some(leaf) = update.activated {
// Only activate in implicit view if prospective
// parachains are enabled.
let mode = prospective_parachains_mode(ctx.sender(), leaf.hash).await?;
let leaf_hash = leaf.hash;
Some((
leaf,
match mode {
ProspectiveParachainsMode::Disabled => LeafHasProspectiveParachains::Disabled,
ProspectiveParachainsMode::Enabled { .. } => LeafHasProspectiveParachains::Enabled(
state.implicit_view.activate_leaf(ctx.sender(), leaf_hash).await.map(|_| mode),
),
},
))
} else {
None
};
for deactivated in update.deactivated {
state.per_leaf.remove(&deactivated);
state.implicit_view.deactivate_leaf(deactivated);
}
// clean up `per_relay_parent` according to ancestry
// of leaves. we do this so we can clean up candidates right after
// as a result.
//
// when prospective parachains are disabled, the implicit view is empty,
// which means we'll clean up everything that's not a leaf - the expected behavior
// for pre-asynchronous backing.
{
let remaining: HashSet<_> = state
.per_leaf
.keys()
.chain(state.implicit_view.all_allowed_relay_parents())
.collect();
state.per_relay_parent.retain(|r, _| remaining.contains(&r));
}
// clean up `per_candidate` according to which relay-parents
// are known.
//
// when prospective parachains are disabled, we clean up all candidates
// because we've cleaned up all relay parents. this is correct.
state
.per_candidate
.retain(|_, pc| state.per_relay_parent.contains_key(&pc.relay_parent));
// Get relay parents which might be fresh but might be known already
// that are explicit or implicit from the new active leaf.
let (fresh_relay_parents, leaf_mode) = match res {
None => return Ok(()),
Some((leaf, LeafHasProspectiveParachains::Disabled)) => {
// defensive in this case - for enabled, this manifests as an error.
if state.per_leaf.contains_key(&leaf.hash) {
return Ok(())
}
state.per_leaf.insert(
leaf.hash,
ActiveLeafState {
prospective_parachains_mode: ProspectiveParachainsMode::Disabled,
// This is empty because the only allowed relay-parent and depth
// when prospective parachains are disabled is the leaf hash and 0,
// respectively. We've just learned about the leaf hash, so we cannot
// have any candidates seconded with it as a relay-parent yet.
seconded_at_depth: HashMap::new(),
},
);
(vec![leaf.hash], ProspectiveParachainsMode::Disabled)
},
Some((leaf, LeafHasProspectiveParachains::Enabled(Ok(prospective_parachains_mode)))) => {
let fresh_relay_parents =
state.implicit_view.known_allowed_relay_parents_under(&leaf.hash, None);
// At this point, all candidates outside of the implicit view
// have been cleaned up. For all which remain, which we've seconded,
// we ask the prospective parachains subsystem where they land in the fragment
// tree for the given active leaf. This comprises our `seconded_at_depth`.
let remaining_seconded = state
.per_candidate
.iter()
.filter(|(_, cd)| cd.seconded_locally)
.map(|(c_hash, cd)| (*c_hash, cd.para_id));
// one-to-one correspondence to remaining_seconded
let mut membership_answers = FuturesOrdered::new();
for (candidate_hash, para_id) in remaining_seconded {
let (tx, rx) = oneshot::channel();
membership_answers
.push_back(rx.map_ok(move |membership| (para_id, candidate_hash, membership)));
ctx.send_message(ProspectiveParachainsMessage::GetTreeMembership(
para_id,
candidate_hash,
tx,
))
.await;
}
let mut seconded_at_depth = HashMap::new();
if let Some(response) = membership_answers.next().await {
match response {
Err(oneshot::Canceled) => {
gum::warn!(
target: LOG_TARGET,
"Prospective parachains subsystem unreachable for membership request",
);
},
Ok((para_id, candidate_hash, membership)) => {
// This request gives membership in all fragment trees. We have some
// wasted data here, and it can be optimized if it proves
// relevant to performance.
if let Some((_, depths)) =
membership.into_iter().find(|(leaf_hash, _)| leaf_hash == &leaf.hash)
{
let para_entry: &mut BTreeMap<usize, CandidateHash> =
seconded_at_depth.entry(para_id).or_default();
for depth in depths {
para_entry.insert(depth, candidate_hash);
}
}
},
}
}
state.per_leaf.insert(
leaf.hash,
ActiveLeafState { prospective_parachains_mode, seconded_at_depth },
);
let fresh_relay_parent = match fresh_relay_parents {
Some(f) => f.to_vec(),
None => {
gum::warn!(
target: LOG_TARGET,
leaf_hash = ?leaf.hash,
"Implicit view gave no relay-parents"
);
vec![leaf.hash]
},
};
(fresh_relay_parent, prospective_parachains_mode)
},
Some((leaf, LeafHasProspectiveParachains::Enabled(Err(e)))) => {
gum::debug!(
target: LOG_TARGET,
leaf_hash = ?leaf.hash,
err = ?e,
"Failed to load implicit view for leaf."
);
return Ok(())
},
};
// add entries in `per_relay_parent`. for all new relay-parents.
for maybe_new in fresh_relay_parents {
if state.per_relay_parent.contains_key(&maybe_new) {
continue
}
let mode = match state.per_leaf.get(&maybe_new) {
None => {
// If the relay-parent isn't a leaf itself,
// then it is guaranteed by the prospective parachains
// subsystem that it is an ancestor of a leaf which
// has prospective parachains enabled and that the
// block itself did.
leaf_mode
},
Some(l) => l.prospective_parachains_mode,
};
// construct a `PerRelayParent` from the runtime API
// and insert it.
let per = construct_per_relay_parent_state(ctx, maybe_new, &state.keystore, mode).await?;
if let Some(per) = per {
state.per_relay_parent.insert(maybe_new, per);
}
}
Ok(())
}
/// Load the data necessary to do backing work on top of a relay-parent.
#[overseer::contextbounds(CandidateBacking, prefix = self::overseer)]
async fn construct_per_relay_parent_state<Context>(
ctx: &mut Context,
relay_parent: Hash,
keystore: &KeystorePtr,
mode: ProspectiveParachainsMode,
) -> Result<Option<PerRelayParentState>, Error> {
macro_rules! try_runtime_api {
($x: expr) => {
match $x {
Ok(x) => x,
Err(err) => {
// Only bubble up fatal errors.
error::log_error(Err(Into::<runtime::Error>::into(err).into()))?;
// We can't do candidate validation work if we don't have the
// requisite runtime API data. But these errors should not take
// down the node.
return Ok(None)
},
}
};
}
let parent = relay_parent;
let (session_index, validators, groups, cores) = futures::try_join!(
request_session_index_for_child(parent, ctx.sender()).await,
request_validators(parent, ctx.sender()).await,
request_validator_groups(parent, ctx.sender()).await,
request_from_runtime(parent, ctx.sender(), |tx| {
RuntimeApiRequest::AvailabilityCores(tx)