-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtimsort-impl.h
837 lines (756 loc) · 24.9 KB
/
timsort-impl.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
/*
* Copyright (C) 2011 Patrick O. Perry
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
static void NAME(binarySort) (void *a, size_t hi, size_t start,
CMPPARAMS(compare, carg), size_t width);
static size_t NAME(countRunAndMakeAscending) (void *a, size_t hi,
CMPPARAMS(compare, carg),
size_t width);
static void NAME(reverseRange) (void *a, size_t hi, size_t width);
static int NAME(mergeCollapse) (struct timsort * ts, size_t width);
static int NAME(mergeForceCollapse) (struct timsort * ts, size_t width);
static int NAME(mergeAt) (struct timsort * ts, size_t i, size_t width);
static size_t NAME(gallopLeft) (void *key, void *base, size_t len,
size_t hint, CMPPARAMS(compare, carg),
size_t width);
static size_t NAME(gallopRight) (void *key, void *base, size_t len,
size_t hint, CMPPARAMS(compare, carg),
size_t width);
static int NAME(mergeLo) (struct timsort * ts, void *base1, size_t len1,
void *base2, size_t len2, size_t width);
static int NAME(mergeHi) (struct timsort * ts, void *base1, size_t len1,
void *base2, size_t len2, size_t width);
static int NAME(timsort) (void *a, size_t nel, size_t width, CMPPARAMS(c, carg))
{
int err = SUCCESS;
struct timsort ts;
size_t minRun;
assert(a || !nel || !width);
assert(c);
if (nel < 2 || !width)
return err; // Arrays of size 0 and 1 are always sorted
// If array is small, do a "mini-TimSort" with no merges
if (nel < MIN_MERGE) {
size_t initRunLen =
CALL(countRunAndMakeAscending) (a, nel, CMPARGS(c, carg), width);
CALL(binarySort) (a, nel, initRunLen, CMPARGS(c, carg), width);
return err;
}
/**
* March over the array once, left to right, finding natural runs,
* extending short natural runs to minRun elements, and merging runs
* to maintain stack invariant.
*/
if ((err = timsort_init(&ts, a, nel, CMPARGS(c, carg), width)))
return err;
minRun = minRunLength(nel);
do {
// Identify next run
size_t runLen =
CALL(countRunAndMakeAscending) (a, nel, CMPARGS(c, carg), width);
// If run is short, extend to min(minRun, nel)
if (runLen < minRun) {
size_t force = nel <= minRun ? nel : minRun;
CALL(binarySort) (a, force, runLen, CMPARGS(c, carg), width);
runLen = force;
}
// Push run onto pending-run stack, and maybe merge
pushRun(&ts, a, runLen);
if ((err = CALL(mergeCollapse) (&ts, width)))
goto out;
// Advance to find next run
a = ELEM(a, runLen);
nel -= runLen;
} while (nel != 0);
// Merge all remaining runs to complete sort
if ((err = CALL(mergeForceCollapse) (&ts, width)))
goto out;
assert(ts.stackSize == 1);
out:
timsort_deinit(&ts);
return err;
}
/**
* Sorts the specified portion of the specified array using a binary
* insertion sort. This is the best method for sorting small numbers
* of elements. It requires O(n log n) compares, but O(n^2) data
* movement (worst case).
*
* If the initial part of the specified range is already sorted,
* this method can take advantage of it: the method assumes that the
* elements from index {@code lo}, inclusive, to {@code start},
* exclusive are already sorted.
*
* @param a the array in which a range is to be sorted
* @param hi the index after the last element in the range to be sorted
* @param start the index of the first element in the range that is
* not already known to be sorted ({@code lo <= start <= hi})
* @param c comparator to used for the sort
*/
static void NAME(binarySort) (void *a, size_t hi, size_t start,
CMPPARAMS(compare, carg), size_t width) {
DEFINE_TEMP(pivot);
char *startp;
assert(start <= hi);
if (start == 0)
start++;
startp = ELEM(a, start);
for (; start < hi; start++, startp = INCPTR(startp)) {
// Set left (and right) to the index where a[start] (pivot) belongs
char *leftp = a;
size_t right = start;
size_t n;
/*
* Invariants:
* pivot >= all in [0, left).
* pivot < all in [right, start).
*/
while (0 < right) {
size_t mid = right >> 1;
void *midp = ELEM(leftp, mid);
if (CMP(compare, carg, startp, midp) < 0) {
right = mid;
} else {
leftp = INCPTR(midp);
right -= (mid + 1);
}
}
assert(0 == right);
/*
* The invariants still hold: pivot >= all in [lo, left) and
* pivot < all in [left, start), so pivot belongs at left. Note
* that if there are elements equal to pivot, left points to the
* first slot after them -- that's why this sort is stable.
* Slide elements over to make room to make room for pivot.
*/
n = startp - leftp; // The number of bytes to move
ASSIGN(pivot, startp);
memmove(INCPTR(leftp), leftp, n); // POP: overlaps
// a[left] = pivot;
ASSIGN(leftp, pivot);
}
(void)width;
}
/**
* Returns the length of the run beginning at the specified position in
* the specified array and reverses the run if it is descending (ensuring
* that the run will always be ascending when the method returns).
*
* A run is the longest ascending sequence with:
*
* a[0] <= a[1] <= a[2] <= ...
*
* or the longest descending sequence with:
*
* a[0] > a[1] > a[2] > ...
*
* For its intended use in a stable mergesort, the strictness of the
* definition of "descending" is needed so that the call can safely
* reverse a descending sequence without violating stability.
*
* @param a the array in which a run is to be counted and possibly reversed
* @param hi index after the last element that may be contained in the run.
* It is required that {@code 0 < hi}.
* @param compare the comparator to used for the sort
* @return the length of the run beginning at the specified position in
* the specified array
*/
static size_t NAME(countRunAndMakeAscending) (void *a, size_t hi,
CMPPARAMS(compare, carg), size_t width)
{
size_t runHi = 1;
char *cur;
char *next;
assert(0 < hi);
if (runHi == hi)
return 1;
cur = INCPTR(a);
next = INCPTR(cur);
runHi++;
// Find end of run, and reverse range if descending
if (CMP(compare, carg, cur, a) < 0) { // Descending
while (runHi < hi && CMP(compare, carg, next, cur) < 0) {
runHi++;
cur = next;
next = INCPTR(next);
}
CALL(reverseRange) (a, runHi, width);
} else { // Ascending
while (runHi < hi && CMP(compare, carg, next, cur) >= 0) {
runHi++;
cur = next;
next = INCPTR(next);
}
}
(void)width;
return runHi;
}
/**
* Reverse the specified range of the specified array.
*
* @param a the array in which a range is to be reversed
* @param hi the index after the last element in the range to be reversed
*/
static void NAME(reverseRange) (void *a, size_t hi, size_t width) {
DEFINE_TEMP(t);
char *front = a;
char *back = ELEM(a, hi - 1);
assert(hi > 0);
while (front < back) {
ASSIGN(t, front);
ASSIGN(front, back);
ASSIGN(back, t);
front = INCPTR(front);
back = DECPTR(back);
}
(void)width;
}
/**
* Examines the stack of runs waiting to be merged and merges adjacent runs
* until the stack invariants are reestablished:
*
* 1. runLen[i - 3] > runLen[i - 2] + runLen[i - 1]
* 2. runLen[i - 2] > runLen[i - 1]
*
* This method is called each time a new run is pushed onto the stack,
* so the invariants are guaranteed to hold for i < stackSize upon
* entry to the method.
*
* POP:
* Modified according to http://envisage-project.eu/wp-content/uploads/2015/02/sorting.pdf
*
* and
*
* https://bugs.openjdk.java.net/browse/JDK-8072909 (suggestion 2)
*
*/
static int NAME(mergeCollapse) (struct timsort * ts, size_t width) {
int err = SUCCESS;
while (ts->stackSize > 1) {
size_t n = ts->stackSize - 2;
struct timsort_run *run = ts->run;
if ((n > 0 && run[n-1].len <= run[n].len + run[n+1].len)
|| (n > 1 && run[n-2].len <= run[n].len + run[n-1].len)) {
if (run[n - 1].len < run[n + 1].len)
n--;
} else if (run[n].len > run[n + 1].len) {
break; /* Invariant is established */
}
err = CALL(mergeAt) (ts, n, width);
if (err)
break;
}
return err;
}
/**
* Merges all runs on the stack until only one remains. This method is
* called once, to complete the sort.
*/
static int NAME(mergeForceCollapse) (struct timsort * ts, size_t width) {
int err = SUCCESS;
while (ts->stackSize > 1) {
size_t n = ts->stackSize - 2;
if (n > 0 && ts->run[n - 1].len < ts->run[n + 1].len)
n--;
err = CALL(mergeAt) (ts, n, width);
if (err)
break;
}
return err;
}
/**
* Merges the two runs at stack indices i and i+1. Run i must be
* the penultimate or antepenultimate run on the stack. In other words,
* i must be equal to stackSize-2 or stackSize-3.
*
* @param i stack index of the first of the two runs to merge
*/
static int NAME(mergeAt) (struct timsort * ts, size_t i, size_t width) {
void *base1 = ts->run[i].base;
size_t len1 = ts->run[i].len;
void *base2 = ts->run[i + 1].base;
size_t len2 = ts->run[i + 1].len;
size_t k;
assert(ts->stackSize >= 2);
assert(i == ts->stackSize - 2 || i == ts->stackSize - 3);
assert(len1 > 0 && len2 > 0);
assert(ELEM(base1, len1) == base2);
/*
* Record the length of the combined runs; if i is the 3rd-last
* run now, also slide over the last run (which isn't involved
* in this merge). The current run (i+1) goes away in any case.
*/
ts->run[i].len = len1 + len2;
if (i == ts->stackSize - 3) {
ts->run[i + 1] = ts->run[i + 2];
}
ts->stackSize--;
/*
* Find where the first element of run2 goes in run1. Prior elements
* in run1 can be ignored (because they're already in place).
*/
k = CALL(gallopRight) (base2, base1, len1, 0, CMPARGS(ts->c, ts->carg), width);
base1 = ELEM(base1, k);
len1 -= k;
if (len1 == 0)
return SUCCESS;
/*
* Find where the last element of run1 goes in run2. Subsequent elements
* in run2 can be ignored (because they're already in place).
*/
len2 =
CALL(gallopLeft) (ELEM(base1, len1 - 1), base2, len2, len2 - 1,
CMPARGS(ts->c, ts->carg), width);
if (len2 == 0)
return SUCCESS;
// Merge remaining runs, using tmp array with min(len1, len2) elements
if (len1 <= len2)
return CALL(mergeLo) (ts, base1, len1, base2, len2, width);
else
return CALL(mergeHi) (ts, base1, len1, base2, len2, width);
}
/**
* Locates the position at which to insert the specified key into the
* specified sorted range; if the range contains an element equal to key,
* returns the index of the leftmost equal element.
*
* @param key the key whose insertion point to search for
* @param base the array in which to search
* @param len the length of the range; must be > 0
* @param hint the index at which to begin the search, 0 <= hint < n.
* The closer hint is to the result, the faster this method will run.
* @param c the comparator used to order the range, and to search
* @return the int k, 0 <= k <= n such that a[b + k - 1] < key <= a[b + k],
* pretending that a[b - 1] is minus infinity and a[b + n] is infinity.
* In other words, key belongs at index b + k; or in other words,
* the first k elements of a should precede key, and the last n - k
* should follow it.
*/
static size_t NAME(gallopLeft) (void *key, void *base, size_t len,
size_t hint, CMPPARAMS(compare, carg),
size_t width) {
char *hintp = ELEM(base, hint);
size_t lastOfs = 0;
size_t ofs = 1;
assert(len > 0 && hint < len);
if (CMP(compare, carg, key, hintp) > 0) {
// Gallop right until a[hint+lastOfs] < key <= a[hint+ofs]
size_t maxOfs = len - hint;
while (ofs < maxOfs
&& CMP(compare, carg, key, ELEM(hintp, ofs)) > 0) {
lastOfs = ofs;
ofs = (ofs << 1) + 1; // eventually this becomes SIZE_MAX
}
if (ofs > maxOfs)
ofs = maxOfs;
// Make offsets relative to base
lastOfs += hint + 1; // POP: we add 1 here so lastOfs stays non-negative
ofs += hint;
} else { // key <= a[hint]
// Gallop left until a[hint-ofs] < key <= a[hint-lastOfs]
const size_t maxOfs = hint + 1;
size_t tmp;
while (ofs < maxOfs
&& CMP(compare, carg, key, ELEM(hintp, -ofs)) <= 0) {
lastOfs = ofs;
ofs = (ofs << 1) + 1; // no need to check for overflow
}
if (ofs > maxOfs)
ofs = maxOfs;
// Make offsets relative to base
tmp = lastOfs;
lastOfs = hint + 1 - ofs; // POP: we add 1 here so lastOfs stays non-negative
ofs = hint - tmp;
}
assert(lastOfs <= ofs && ofs <= len);
/*
* Now a[lastOfs-1] < key <= a[ofs], so key belongs somewhere
* to the right of lastOfs but no farther right than ofs. Do a binary
* search, with invariant a[lastOfs - 1] < key <= a[ofs].
*/
// lastOfs++; POP: we added 1 above to keep lastOfs non-negative
while (lastOfs < ofs) {
//size_t m = lastOfs + ((ofs - lastOfs) >> 1);
// http://stackoverflow.com/questions/4844165/safe-integer-middle-value-formula
size_t m = (lastOfs & ofs) + ((lastOfs ^ ofs) >> 1);
if (CMP(compare, carg, key, ELEM(base, m)) > 0)
lastOfs = m + 1; // a[m] < key
else
ofs = m; // key <= a[m]
}
assert(lastOfs == ofs); // so a[ofs - 1] < key <= a[ofs]
(void)width;
return ofs;
}
/**
* Like gallopLeft, except that if the range contains an element equal to
* key, gallopRight returns the index after the rightmost equal element.
*
* @param key the key whose insertion point to search for
* @param base the array in which to search
* @param len the length of the range; must be > 0
* @param hint the index at which to begin the search, 0 <= hint < n.
* The closer hint is to the result, the faster this method will run.
* @param c the comparator used to order the range, and to search
* @return the int k, 0 <= k <= n such that a[b + k - 1] <= key < a[b + k]
*/
static size_t NAME(gallopRight) (void *key, void *base, size_t len,
size_t hint, CMPPARAMS(compare, carg),
size_t width) {
char *hintp = ELEM(base, hint);
size_t ofs = 1;
size_t lastOfs = 0;
assert(len > 0 && hint < len);
if (CMP(compare, carg, key, hintp) < 0) {
// Gallop left until a[hint - ofs] <= key < a[hint - lastOfs]
size_t maxOfs = hint + 1;
size_t tmp;
while (ofs < maxOfs
&& CMP(compare, carg, key, ELEM(hintp, -ofs)) < 0) {
lastOfs = ofs;
ofs = (ofs << 1) + 1; // no need to check for overflow
}
if (ofs > maxOfs)
ofs = maxOfs;
// Make offsets relative to base
tmp = lastOfs;
lastOfs = hint + 1 - ofs;
ofs = hint - tmp;
} else { // a[hint] <= key
// Gallop right until a[hint + lastOfs] <= key < a[hint + ofs]
size_t maxOfs = len - hint;
while (ofs < maxOfs
&& CMP(compare, carg, key, ELEM(hintp, ofs)) >= 0) {
lastOfs = ofs;
ofs = (ofs << 1) + 1; // no need to check for overflow
}
if (ofs > maxOfs)
ofs = maxOfs;
// Make offsets relative to base
lastOfs += hint + 1;
ofs += hint;
}
assert(lastOfs <= ofs && ofs <= len);
/*
* Now a[lastOfs - 1] <= key < a[ofs], so key belongs somewhere to
* the right of lastOfs but no farther right than ofs. Do a binary
* search, with invariant a[lastOfs - 1] <= key < a[ofs].
*/
while (lastOfs < ofs) {
// size_t m = lastOfs + ((ofs - lastOfs) >> 1);
size_t m = (lastOfs & ofs) + ((lastOfs ^ ofs) >> 1);
if (CMP(compare, carg, key, ELEM(base, m)) < 0)
ofs = m; // key < a[m]
else
lastOfs = m + 1; // a[m] <= key
}
assert(lastOfs == ofs); // so a[ofs - 1] <= key < a[ofs]
(void)width;
return ofs;
}
/**
* Merges two adjacent runs in place, in a stable fashion. The first
* element of the first run must be greater than the first element of the
* second run (a[base1] > a[base2]), and the last element of the first run
* (a[base1 + len1-1]) must be greater than all elements of the second run.
*
* For performance, this method should be called only when len1 <= len2;
* its twin, mergeHi should be called if len1 >= len2. (Either method
* may be called if len1 == len2.)
*
* @param base1 first element in first run to be merged
* @param len1 length of first run to be merged (must be > 0)
* @param base2 first element in second run to be merged
* (must be aBase + aLen)
* @param len2 length of second run to be merged (must be > 0)
*/
static int NAME(mergeLo) (struct timsort * ts, void *base1, size_t len1,
void *base2, size_t len2, size_t width) {
// Copy first run into temp array
void *tmp = ensureCapacity(ts, len1, width);
char *cursor1;
char *cursor2;
char *dest;
comparator compare; // Use local variable for performance
#ifdef IS_TIMSORT_R
void *carg; // Use local variable for performance
#endif
size_t minGallop; // " " " " "
assert(len1 > 0 && len2 > 0 && ELEM(base1, len1) == base2);
if (!tmp)
return FAILURE;
// System.arraycopy(a, base1, tmp, 0, len1);
memcpy(tmp, base1, LEN(len1)); // POP: can't overlap
cursor1 = tmp; // Indexes into tmp array
cursor2 = base2; // Indexes int a
dest = base1; // Indexes int a
// Move first element of second run and deal with degenerate cases
// a[dest++] = a[cursor2++];
ASSIGN(dest, cursor2);
dest = INCPTR(dest);
cursor2 = INCPTR(cursor2);
if (--len2 == 0) {
memcpy(dest, cursor1, LEN(len1)); // POP: can't overlap
return SUCCESS;
}
if (len1 == 1) {
memmove(dest, cursor2, LEN(len2)); // POP: overlaps
// a[dest + len2] = tmp[cursor1]; // Last elt of run 1 to end of merge
ASSIGN(ELEM(dest, len2), cursor1);
return SUCCESS;
}
compare = ts->c; // Use local variable for performance
#ifdef IS_TIMSORT_R
carg = ts->carg; // Use local variable for performance
#endif
minGallop = ts->minGallop; // " " " " "
while (1) {
size_t count1 = 0; // Number of times in a row that first run won
size_t count2 = 0; // Number of times in a row that second run won
/*
* Do the straightforward thing until (if ever) one run starts
* winning consistently.
*/
do {
assert(len1 > 1 && len2 > 0);
if (CMP(compare, carg, cursor2, cursor1) < 0) {
ASSIGN(dest, cursor2);
dest = INCPTR(dest);
cursor2 = INCPTR(cursor2);
count2++;
count1 = 0;
if (--len2 == 0)
goto outer;
if (count2 >= minGallop)
break;
} else {
ASSIGN(dest, cursor1);
dest = INCPTR(dest);
cursor1 = INCPTR(cursor1);
count1++;
count2 = 0;
if (--len1 == 1)
goto outer;
if (count1 >= minGallop)
break;
}
} while (1); // (count1 | count2) < minGallop);
/*
* One run is winning so consistently that galloping may be a
* huge win. So try that, and continue galloping until (if ever)
* neither run appears to be winning consistently anymore.
*/
do {
assert(len1 > 1 && len2 > 0);
count1 =
CALL(gallopRight) (cursor2, cursor1, len1, 0,
CMPARGS(compare, carg), width);
if (count1 != 0) {
memcpy(dest, cursor1, LEN(count1)); // POP: can't overlap
dest = ELEM(dest, count1);
cursor1 = ELEM(cursor1, count1);
len1 -= count1;
if (len1 <= 1) // len1 == 1 || len1 == 0
goto outer;
}
ASSIGN(dest, cursor2);
dest = INCPTR(dest);
cursor2 = INCPTR(cursor2);
if (--len2 == 0)
goto outer;
count2 =
CALL(gallopLeft) (cursor1, cursor2, len2, 0,
CMPARGS(compare, carg), width);
if (count2 != 0) {
memmove(dest, cursor2, LEN(count2)); // POP: might overlap
dest = ELEM(dest, count2);
cursor2 = ELEM(cursor2, count2);
len2 -= count2;
if (len2 == 0)
goto outer;
}
ASSIGN(dest, cursor1);
dest = INCPTR(dest);
cursor1 = INCPTR(cursor1);
if (--len1 == 1)
goto outer;
if (minGallop > 0)
minGallop--;
} while (count1 >= MIN_GALLOP || count2 >= MIN_GALLOP);
minGallop += 2; // Penalize for leaving gallop mode
} // End of "outer" loop
outer:
ts->minGallop = minGallop < 1 ? 1 : minGallop; // Write back to field
if (len1 == 1) {
assert(len2 > 0);
memmove(dest, cursor2, LEN(len2)); // POP: might overlap
ASSIGN(ELEM(dest, len2), cursor1); // Last elt of run 1 to end of merge
} else if (len1 == 0) {
errno = EINVAL; // Comparison method violates its general contract
return FAILURE;
} else {
assert(len2 == 0);
assert(len1 > 1);
memcpy(dest, cursor1, LEN(len1)); // POP: can't overlap
}
return SUCCESS;
}
/**
* Like mergeLo, except that this method should be called only if
* len1 >= len2; mergeLo should be called if len1 <= len2. (Either method
* may be called if len1 == len2.)
*
* @param base1 first element in first run to be merged
* @param len1 length of first run to be merged (must be > 0)
* @param base2 first element in second run to be merged
* (must be aBase + aLen)
* @param len2 length of second run to be merged (must be > 0)
*/
static int NAME(mergeHi) (struct timsort * ts, void *base1, size_t len1,
void *base2, size_t len2, size_t width) {
// Copy second run into temp array
void *tmp = ensureCapacity(ts, len2, width);
char *cursor1; // Indexes into a
char *cursor2; // Indexes into tmp array
char *dest; // Indexes into a
comparator compare; // Use local variable for performance
#ifdef IS_TIMSORT_R
void *carg; // " " " " "
#endif
size_t minGallop; // " " " " "
assert(len1 > 0 && len2 > 0 && ELEM(base1, len1) == base2);
if (!tmp)
return FAILURE;
memcpy(tmp, base2, LEN(len2)); // POP: can't overlap
cursor1 = ELEM(base1, len1 - 1);// Indexes into a
cursor2 = ELEM(tmp, len2 - 1); // Indexes into tmp array
dest = ELEM(base2, len2 - 1); // Indexes into a
// Move last element of first run and deal with degenerate cases
// a[dest--] = a[cursor1--];
ASSIGN(dest, cursor1);
dest = DECPTR(dest);
cursor1 = DECPTR(cursor1);
if (--len1 == 0) {
memcpy(ELEM(dest, -(len2 - 1)), tmp, LEN(len2)); // POP: can't overlap
return SUCCESS;
}
if (len2 == 1) {
dest = ELEM(dest, -len1);
cursor1 = ELEM(cursor1, -len1);
memmove(ELEM(dest, 1), ELEM(cursor1, 1), LEN(len1)); // POP: overlaps
// a[dest] = tmp[cursor2];
ASSIGN(dest, cursor2);
return SUCCESS;
}
compare = ts->c; // Use local variable for performance
#ifdef IS_TIMSORT_R
carg = ts->carg; // Use local variable for performance
#endif
minGallop = ts->minGallop; // " " " " "
while (1) {
size_t count1 = 0; // Number of times in a row that first run won
size_t count2 = 0; // Number of times in a row that second run won
/*
* Do the straightforward thing until (if ever) one run
* appears to win consistently.
*/
do {
assert(len1 > 0 && len2 > 1);
if (CMP(compare, carg, cursor2, cursor1) < 0) {
ASSIGN(dest, cursor1);
dest = DECPTR(dest);
cursor1 = DECPTR(cursor1);
count1++;
count2 = 0;
if (--len1 == 0)
goto outer;
} else {
ASSIGN(dest, cursor2);
dest = DECPTR(dest);
cursor2 = DECPTR(cursor2);
count2++;
count1 = 0;
if (--len2 == 1)
goto outer;
}
} while ((count1 | count2) < minGallop);
/*
* One run is winning so consistently that galloping may be a
* huge win. So try that, and continue galloping until (if ever)
* neither run appears to be winning consistently anymore.
*/
do {
assert(len1 > 0 && len2 > 1);
count1 =
len1 - CALL(gallopRight) (cursor2, base1,
len1, len1 - 1,
CMPARGS(compare, carg),
width);
if (count1 != 0) {
dest = ELEM(dest, -count1);
cursor1 = ELEM(cursor1, -count1);
len1 -= count1;
memmove(INCPTR(dest), INCPTR(cursor1),
LEN(count1)); // POP: might overlap
if (len1 == 0)
goto outer;
}
ASSIGN(dest, cursor2);
dest = DECPTR(dest);
cursor2 = DECPTR(cursor2);
if (--len2 == 1)
goto outer;
count2 =
len2 - CALL(gallopLeft) (cursor1, tmp, len2,
len2 - 1, CMPARGS(compare, carg),
width);
if (count2 != 0) {
dest = ELEM(dest, -count2);
cursor2 = ELEM(cursor2, -count2);
len2 -= count2;
memcpy(INCPTR(dest), INCPTR(cursor2), LEN(count2)); // POP: can't overlap
if (len2 <= 1) // len2 == 1 || len2 == 0
goto outer;
}
ASSIGN(dest, cursor1);
dest = DECPTR(dest);
cursor1 = DECPTR(cursor1);
if (--len1 == 0)
goto outer;
if (minGallop > 0)
minGallop--;
} while (count1 >= MIN_GALLOP || count2 >= MIN_GALLOP);
minGallop += 2; // Penalize for leaving gallop mode
} // End of "outer" loop
outer:
ts->minGallop = minGallop < 1 ? 1 : minGallop; // Write back to field
if (len2 == 1) {
assert(len1 > 0);
dest = ELEM(dest, -len1);
cursor1 = ELEM(cursor1, -len1);
memmove(INCPTR(dest), INCPTR(cursor1), LEN(len1)); // POP: might overlap
// a[dest] = tmp[cursor2]; // Move first elt of run2 to front of merge
ASSIGN(dest, cursor2);
} else if (len2 == 0) {
errno = EINVAL; // Comparison method violates its general contract
return FAILURE;
} else {
assert(len1 == 0);
assert(len2 > 0);
memcpy(ELEM(dest, -(len2 - 1)), tmp, LEN(len2)); // POP: can't overlap
}
return SUCCESS;
}