-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
17_save_load.py
136 lines (99 loc) · 3.41 KB
/
17_save_load.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import torch
import torch.nn as nn
''' 3 DIFFERENT METHODS TO REMEMBER:
- torch.save(arg, PATH) # can be model, tensor, or dictionary
- torch.load(PATH)
- torch.load_state_dict(arg)
'''
''' 2 DIFFERENT WAYS OF SAVING
# 1) lazy way: save whole model
torch.save(model, PATH)
# model class must be defined somewhere
model = torch.load(PATH)
model.eval()
# 2) recommended way: save only the state_dict
torch.save(model.state_dict(), PATH)
# model must be created again with parameters
model = Model(*args, **kwargs)
model.load_state_dict(torch.load(PATH))
model.eval()
'''
class Model(nn.Module):
def __init__(self, n_input_features):
super(Model, self).__init__()
self.linear = nn.Linear(n_input_features, 1)
def forward(self, x):
y_pred = torch.sigmoid(self.linear(x))
return y_pred
model = Model(n_input_features=6)
# train your model...
####################save all ######################################
for param in model.parameters():
print(param)
# save and load entire model
FILE = "model.pth"
torch.save(model, FILE)
loaded_model = torch.load(FILE)
loaded_model.eval()
for param in loaded_model.parameters():
print(param)
############save only state dict #########################
# save only state dict
FILE = "model.pth"
torch.save(model.state_dict(), FILE)
print(model.state_dict())
loaded_model = Model(n_input_features=6)
loaded_model.load_state_dict(torch.load(FILE)) # it takes the loaded dictionary, not the path file itself
loaded_model.eval()
print(loaded_model.state_dict())
###########load checkpoint#####################
learning_rate = 0.01
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
checkpoint = {
"epoch": 90,
"model_state": model.state_dict(),
"optim_state": optimizer.state_dict()
}
print(optimizer.state_dict())
FILE = "checkpoint.pth"
torch.save(checkpoint, FILE)
model = Model(n_input_features=6)
optimizer = torch.optim.SGD(model.parameters(), lr=0)
checkpoint = torch.load(FILE)
model.load_state_dict(checkpoint['model_state'])
optimizer.load_state_dict(checkpoint['optim_state'])
epoch = checkpoint['epoch']
model.eval()
# - or -
# model.train()
print(optimizer.state_dict())
# Remember that you must call model.eval() to set dropout and batch normalization layers
# to evaluation mode before running inference. Failing to do this will yield
# inconsistent inference results. If you wish to resuming training,
# call model.train() to ensure these layers are in training mode.
""" SAVING ON GPU/CPU
# 1) Save on GPU, Load on CPU
device = torch.device("cuda")
model.to(device)
torch.save(model.state_dict(), PATH)
device = torch.device('cpu')
model = Model(*args, **kwargs)
model.load_state_dict(torch.load(PATH, map_location=device))
# 2) Save on GPU, Load on GPU
device = torch.device("cuda")
model.to(device)
torch.save(model.state_dict(), PATH)
model = Model(*args, **kwargs)
model.load_state_dict(torch.load(PATH))
model.to(device)
# Note: Be sure to use the .to(torch.device('cuda')) function
# on all model inputs, too!
# 3) Save on CPU, Load on GPU
torch.save(model.state_dict(), PATH)
device = torch.device("cuda")
model = Model(*args, **kwargs)
model.load_state_dict(torch.load(PATH, map_location="cuda:0")) # Choose whatever GPU device number you want
model.to(device)
# This loads the model to a given GPU device.
# Next, be sure to call model.to(torch.device('cuda')) to convert the model’s parameter tensors to CUDA tensors
"""