-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
49 lines (39 loc) · 2.33 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import streamlit as st
import pandas as pd
from langchain_openai import ChatOpenAI, OpenAI
from langchain_core.messages import HumanMessage, AIMessage, SystemMessage
import dotenv
import os
from langchain.agents.agent_types import AgentType
from langchain_experimental.agents.agent_toolkits import create_pandas_dataframe_agent
from utils import process_query, show_chat_history
dotenv.load_dotenv(".env", override=True)
st.session_state['llm'] = ChatOpenAI(model="gpt-3.5-turbo", api_key=os.environ['OPEN_AI_API'])
greetings = '''Hello my name is Bin, I am your data analytic assistant. Feel free to ask me anything about your dataset'''
if 'conversations' not in st.session_state:
st.session_state['conversations'] = [({'role':"System", 'content':"You are an assistant for a data analyst, try to help them with what they do"}, 0)]
st.session_state['conversations'].append(({'role':'AI', 'content':greetings}, 0))
st.session_state['conversations_text'] = [SystemMessage(content = "You are an assistant for a data analyst, try to help them with what they do")]
st.session_state['conversations_text'].append(AIMessage(content=greetings))
st.title("Data analytics app")
with st.sidebar:
df = st.file_uploader("Upload a file", type = ['csv'])
if df or 'df' in st.session_state:
if df:
st.session_state['df'] = pd.read_csv(df)
st.table(st.session_state['df'].head())
st.session_state['agent'] = create_pandas_dataframe_agent(llm=st.session_state['llm'], agent_type='tool-calling', df=st.session_state['df'], verbose=True, allow_dangerous_code=True, return_intermediate_steps=True)
if 'conversations' in st.session_state:
# print(st.session_state['conversations'])
show_chat_history()
if query := st.chat_input("Your Message"):
st.chat_message("Human").markdown(query)
st.session_state['conversations'].append(({'role': 'Human', 'content':query}, 0))
st.session_state['conversations_text'].append(HumanMessage(content=query))
process_query(st.session_state.agent, query)
# response = st.session_state['llm'].invoke(st.session_state['conversations'])
#st.chat_message("AI").markdown(response)
#st.session_state['conversations'].append(response)
#st.markdown(st.session_state['conversations'])
else:
st.markdown("### Please upload your dataset")