forked from JuliaLang/julia
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathblas.jl
716 lines (678 loc) · 34.6 KB
/
blas.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
# This file is a part of Julia. License is MIT: https://julialang.org/license
module TestBLAS
using Test, LinearAlgebra, Random
using LinearAlgebra: BlasReal, BlasComplex
fabs(x::Real) = abs(x)
fabs(x::Complex) = abs(real(x)) + abs(imag(x))
# help function to build packed storage
function pack(A, uplo)
AP = eltype(A)[]
n = size(A, 1)
for j in 1:n, i in (uplo === :L ? (j:n) : (1:j))
push!(AP, A[i,j])
end
return AP
end
@testset "vec_pointer_stride" begin
a = float(rand(1:20,4,4,4))
@test BLAS.asum(a) == sum(a) # dense case
@test BLAS.asum(view(a,1:2:4,:,:)) == sum(view(a,1:2:4,:,:)) # vector like
@test BLAS.asum(view(a,1:3,2:2,3:3)) == sum(view(a,1:3,2:2,3:3))
@test BLAS.asum(view(a,1:1,1:3,1:1)) == sum(view(a,1:1,1:3,1:1))
@test BLAS.asum(view(a,1:1,1:1,1:3)) == sum(view(a,1:1,1:1,1:3))
@test_throws ArgumentError BLAS.asum(view(a,1:3:4,:,:)) # non-vector like
@test_throws ArgumentError BLAS.asum(view(a,1:2,1:1,1:3))
end
Random.seed!(100)
## BLAS tests - testing the interface code to BLAS routines
@testset for elty in [Float32, Float64, ComplexF32, ComplexF64]
@testset "syr2k!" begin
U = randn(elty, 5, 2)
V = randn(elty, 5, 2)
@test tril(LinearAlgebra.BLAS.syr2k('L','N',U,V)) ≈ tril(U*transpose(V) + V*transpose(U))
@test triu(LinearAlgebra.BLAS.syr2k('U','N',U,V)) ≈ triu(U*transpose(V) + V*transpose(U))
@test tril(LinearAlgebra.BLAS.syr2k('L','T',U,V)) ≈ tril(transpose(U)*V + transpose(V)*U)
@test triu(LinearAlgebra.BLAS.syr2k('U','T',U,V)) ≈ triu(transpose(U)*V + transpose(V)*U)
end
if elty in (ComplexF32, ComplexF64)
@testset "her2k!" begin
U = randn(elty, 5, 2)
V = randn(elty, 5, 2)
@test tril(LinearAlgebra.BLAS.her2k('L','N',U,V)) ≈ tril(U*V' + V*U')
@test triu(LinearAlgebra.BLAS.her2k('U','N',U,V)) ≈ triu(U*V' + V*U')
@test tril(LinearAlgebra.BLAS.her2k('L','C',U,V)) ≈ tril(U'*V + V'*U)
@test triu(LinearAlgebra.BLAS.her2k('U','C',U,V)) ≈ triu(U'*V + V'*U)
end
end
o4 = fill(elty(1), 4)
z4 = zeros(elty, 4)
I4 = Matrix{elty}(I, 4, 4)
I43 = Matrix{elty}(I, 4, 3)
L4 = tril(fill(elty(1), 4,4))
U4 = triu(fill(elty(1), 4,4))
Z4 = zeros(elty, (4,4))
elm1 = elty(-1)
el2 = elty(2)
v14 = elty[1:4;]
v41 = elty[4:-1:1;]
let n = 10
@testset "dot products" begin
if elty <: Real
x1 = randn(elty, n)
x2 = randn(elty, n)
@test BLAS.dot(x1,x2) ≈ sum(x1.*x2)
@test_throws DimensionMismatch BLAS.dot(x1,rand(elty, n + 1))
else
z1 = randn(elty, n)
z2 = randn(elty, n)
@test BLAS.dotc(z1,z2) ≈ sum(conj(z1).*z2)
@test BLAS.dotu(z1,z2) ≈ sum(z1.*z2)
@test_throws DimensionMismatch BLAS.dotc(z1,rand(elty, n + 1))
@test_throws DimensionMismatch BLAS.dotu(z1,rand(elty, n + 1))
end
end
@testset "iamax" begin
x = randn(elty, n)
@test BLAS.iamax(x) == findmax(fabs, x)[2]
end
@testset "rot!" begin
x = randn(elty, n)
y = randn(elty, n)
c = rand(real(elty))
for sty in unique!([real(elty), elty])
s = rand(sty)
x2 = copy(x)
y2 = copy(y)
BLAS.rot!(n, x, 1, y, 1, c, s)
@test x ≈ c*x2 + s*y2
@test y ≈ -conj(s)*x2 + c*y2
end
end
@testset "axp(b)y" begin
x1 = randn(elty, n)
x2 = randn(elty, n)
α = rand(elty)
β = rand(elty)
for X1 in (x1, view(x1,n:-1:1)), X2 in (x2, view(x2, n:-1:1))
@test BLAS.axpy!(α,deepcopy(X1),deepcopy(X2)) ≈ α*X1 + X2
@test BLAS.axpby!(α,deepcopy(X1),β,deepcopy(X2)) ≈ α*X1 + β*X2
end
for ind1 in (1:n, n:-1:1), ind2 in (1:n, n:-1:1)
@test BLAS.axpy!(α,copy(x1),ind1,copy(x2),ind2) ≈ x2 + α*(ind1 == ind2 ? x1 : reverse(x1))
end
@test_throws DimensionMismatch BLAS.axpy!(α, copy(x1), rand(elty, n + 1))
@test_throws DimensionMismatch BLAS.axpby!(α, copy(x1), β, rand(elty, n + 1))
@test_throws DimensionMismatch BLAS.axpy!(α, copy(x1), 1:div(n,2), copy(x2), 1:n)
@test_throws ArgumentError BLAS.axpy!(α, copy(x1), 0:div(n,2), copy(x2), 1:(div(n, 2) + 1))
@test_throws ArgumentError BLAS.axpy!(α, copy(x1), 1:div(n,2), copy(x2), 0:(div(n, 2) - 1))
end
@testset "nrm2, iamax, and asum for StridedVectors" begin
a = rand(elty,n)
for ind in (2:2:n, n:-2:2)
b = view(a, ind, 1)
@test BLAS.nrm2(b) ≈ sqrt(sum(abs2, b))
@test BLAS.asum(b) ≈ sum(fabs, b)
@test BLAS.iamax(b) == findmax(fabs, b)[2] * (step(ind) >= 0)
end
end
@testset "scal" begin
α = rand(elty)
a = rand(elty,n)
@test BLAS.scal(n,α,a,1) ≈ α * a
for v in (a, view(a, n:-1:1))
@test BLAS.scal!(α, deepcopy(v)) ≈ α * v
end
end
@testset "ger, her, syr" for x in (rand(elty, n), view(rand(elty,2n), 1:2:2n), view(rand(elty,n), n:-1:1)),
y in (rand(elty,n), view(rand(elty,3n), 1:3:3n), view(rand(elty,2n), 2n:-2:2))
A = rand(elty,n,n)
α = rand(elty)
@test BLAS.ger!(α,x,y,copy(A)) ≈ A + α*x*y'
@test_throws DimensionMismatch BLAS.ger!(α,Vector{elty}(undef,n+1),y,copy(A))
A = rand(elty,n,n)
A = A + transpose(A)
@test issymmetric(A)
@test triu(BLAS.syr!('U',α,x,copy(A))) ≈ triu(A + α*x*transpose(x))
@test_throws DimensionMismatch BLAS.syr!('U',α,Vector{elty}(undef,n+1),copy(A))
if elty <: Complex
A = rand(elty,n,n)
A = A + A'
α = real(α)
@test triu(BLAS.her!('U',α,x,copy(A))) ≈ triu(A + α*x*x')
@test_throws DimensionMismatch BLAS.her!('U',α,Vector{elty}(undef,n+1),copy(A))
end
end
@testset "copy" begin
x1 = randn(elty, n)
x2 = randn(elty, n)
for ind1 in (1:n, n:-1:1), ind2 in (1:n, n:-1:1)
@test x2 === BLAS.copyto!(x2, ind1, x1, ind2) == (ind1 == ind2 ? x1 : reverse(x1))
end
@test_throws DimensionMismatch BLAS.copyto!(x2, 1:n, x1, 1:(n - 1))
@test_throws ArgumentError BLAS.copyto!(x1, 0:div(n, 2), x2, 1:(div(n, 2) + 1))
@test_throws ArgumentError BLAS.copyto!(x1, 1:(div(n, 2) + 1), x2, 0:div(n, 2))
end
@testset "trmv and trsv" begin
A = rand(elty,n,n)
x = rand(elty,n)
xerr = Vector{elty}(undef,n+1)
for uplo in ('U', 'L'), diag in ('U','N'), trans in ('N', 'T', 'C')
Wrapper = if uplo == 'U'
diag == 'U' ? UnitUpperTriangular : UpperTriangular
else
diag == 'U' ? UnitLowerTriangular : LowerTriangular
end
fun = trans == 'N' ? identity : trans == 'T' ? transpose : adjoint
fullA = collect(fun(Wrapper(A)))
@testset "trmv" begin
@test BLAS.trmv(uplo,trans,diag,A,x) ≈ fullA * x
@test_throws DimensionMismatch BLAS.trmv(uplo,trans,diag,A,xerr)
for xx in (x, view(x, n:-1:1))
@test BLAS.trmv!(uplo,trans,diag,A,deepcopy(xx)) ≈ fullA * xx
end
end
@testset "trsv" begin
@test BLAS.trsv(uplo,trans,diag,A,x) ≈ fullA \ x
@test_throws DimensionMismatch BLAS.trsv(uplo,trans,diag,A,xerr)
for xx in (x, view(x, n:-1:1))
@test BLAS.trsv!(uplo,trans,diag,A,deepcopy(xx)) ≈ fullA \ xx
end
end
end
end
@testset "symmetric/Hermitian multiplication" begin
x = rand(elty,n)
A = rand(elty,n,n)
y = rand(elty, n)
α = randn(elty)
β = randn(elty)
Aherm = A + A'
Asymm = A + transpose(A)
offsizevec, offsizemat = Array{elty}.(undef,(n+1, (n,n+1)))
@testset "symv and hemv" for uplo in ('U', 'L')
@test BLAS.symv(uplo,Asymm,x) ≈ Asymm*x
for xx in (x, view(x, n:-1:1)), yy in (y, view(y, n:-1:1))
@test BLAS.symv!(uplo,α,Asymm,xx,β,deepcopy(yy)) ≈ α * Asymm * xx + β * yy
end
@test_throws DimensionMismatch BLAS.symv!(uplo,α,Asymm,x,β,offsizevec)
@test_throws DimensionMismatch BLAS.symv(uplo,offsizemat,x)
if elty <: BlasComplex
@test BLAS.hemv(uplo,Aherm,x) ≈ Aherm*x
for xx in (x, view(x, n:-1:1)), yy in (y, view(y, n:-1:1))
@test BLAS.hemv!(uplo,α,Aherm,xx,β,deepcopy(yy)) ≈ α * Aherm * xx + β * yy
end
@test_throws DimensionMismatch BLAS.hemv(uplo,offsizemat,x)
@test_throws DimensionMismatch BLAS.hemv!(uplo,one(elty),Aherm,x,one(elty),offsizevec)
end
end
@testset "symm error throwing" begin
Cnn, Cnm, Cmn = Matrix{elty}.(undef,((n,n), (n,n-1), (n-1,n)))
@test_throws DimensionMismatch BLAS.symm('L','U',Cnm,Cnn)
@test_throws DimensionMismatch BLAS.symm('R','U',Cmn,Cnn)
@test_throws DimensionMismatch BLAS.symm!('L','U',one(elty),Asymm,Cnn,one(elty),Cmn)
@test_throws DimensionMismatch BLAS.symm!('L','U',one(elty),Asymm,Cnn,one(elty),Cnm)
@test_throws DimensionMismatch BLAS.symm!('L','U',one(elty),Asymm,Cmn,one(elty),Cnn)
@test_throws DimensionMismatch BLAS.symm!('R','U',one(elty),Asymm,Cnm,one(elty),Cmn)
@test_throws DimensionMismatch BLAS.symm!('R','U',one(elty),Asymm,Cnn,one(elty),Cnm)
@test_throws DimensionMismatch BLAS.symm!('R','U',one(elty),Asymm,Cmn,one(elty),Cnn)
if elty <: BlasComplex
@test_throws DimensionMismatch BLAS.hemm('L','U',Cnm,Cnn)
@test_throws DimensionMismatch BLAS.hemm('R','U',Cmn,Cnn)
@test_throws DimensionMismatch BLAS.hemm!('L','U',one(elty),Aherm,Cnn,one(elty),Cmn)
@test_throws DimensionMismatch BLAS.hemm!('L','U',one(elty),Aherm,Cnn,one(elty),Cnm)
@test_throws DimensionMismatch BLAS.hemm!('L','U',one(elty),Aherm,Cmn,one(elty),Cnn)
@test_throws DimensionMismatch BLAS.hemm!('R','U',one(elty),Aherm,Cnm,one(elty),Cmn)
@test_throws DimensionMismatch BLAS.hemm!('R','U',one(elty),Aherm,Cnn,one(elty),Cnm)
@test_throws DimensionMismatch BLAS.hemm!('R','U',one(elty),Aherm,Cmn,one(elty),Cnn)
end
end
end
@testset "trmm error throwing" begin
Cnn, Cmn, Cnm = Matrix{elty}.(undef,((n,n), (n+1,n), (n,n+1)))
@test_throws DimensionMismatch BLAS.trmm('L','U','N','N',one(elty),triu(Cnn),Cmn)
@test_throws DimensionMismatch BLAS.trmm('R','U','N','N',one(elty),triu(Cnn),Cnm)
end
# hpmv!
if elty in (ComplexF32, ComplexF64)
@testset "hpmv!" begin
# Both matrix dimensions n coincide, as we have Hermitian matrices.
# Define the inputs and outputs of hpmv!, y = α*A*x+β*y
α = rand(elty)
A = rand(elty, n, n)
x = rand(elty, n)
β = rand(elty)
y = rand(elty, n)
for uplo in (:L, :U)
Cuplo = String(uplo)[1]
AH = Hermitian(A, uplo)
# Create lower/upper triangular packing of AL
AP = pack(AH, uplo)
for xx in (x, view(x,n:-1:1)), yy in (y, view(y,n:-1:1))
@test BLAS.hpmv!(Cuplo, α, AP, xx, β, deepcopy(yy)) ≈ α*AH*xx + β*yy
end
AP′ = view(zeros(elty, n*(n+1)),1:2:n*(n+1))
@test_throws ErrorException BLAS.hpmv!(Cuplo, α, AP′, x, β, y)
AP′ = view(AP, 1:length(AP′) - 1)
@test_throws DimensionMismatch BLAS.hpmv!(Cuplo, α, AP′, x, β, y)
@test_throws DimensionMismatch BLAS.hpmv!(Cuplo, α, AP′, x, β, view(y,1:n-1))
end
end
end
# spmv!
if elty in (Float32, Float64)
@testset "spmv!" begin
# Both matrix dimensions n coincide, as we have symmetric matrices.
# Define the inputs and outputs of spmv!, y = α*A*x+β*y
α = rand(elty)
A = rand(elty, n, n)
x = rand(elty, n)
β = rand(elty)
y = rand(elty, n)
for uplo in (:L, :U)
Cuplo = String(uplo)[1]
AS = Symmetric(A, uplo)
# Create lower/upper triangular packing of AL
AP = pack(AS, uplo)
for xx in (x, view(x,n:-1:1)), yy in (y, view(y,n:-1:1))
@test BLAS.spmv!(Cuplo, α, AP, xx, β, deepcopy(yy)) ≈ α*AS*xx + β*yy
end
AP′ = view(zeros(elty, n*(n+1)),1:2:n*(n+1))
@test_throws ErrorException BLAS.spmv!(Cuplo, α, AP′, x, β, y)
AP′ = view(AP, 1:length(AP′) - 1)
@test_throws DimensionMismatch BLAS.spmv!(Cuplo, α, AP′, x, β, y)
@test_throws DimensionMismatch BLAS.spmv!(Cuplo, α, AP′, x, β, view(y,1:n-1))
end
end
end
# spr!
if elty in (Float32, Float64)
@testset "spr! $elty" begin
α = rand(elty)
M = rand(elty, n, n)
AL = Symmetric(M, :L)
AU = Symmetric(M, :U)
for x in (rand(elty, n), view(rand(elty, n), n:-1:1))
ALP_result_julia_lower = pack(α*x*x' + AL, :L)
ALP_result_blas_lower = pack(AL, :L)
BLAS.spr!('L', α, x, ALP_result_blas_lower)
@test ALP_result_julia_lower ≈ ALP_result_blas_lower
ALP_result_blas_lower = append!(pack(AL, :L), ones(elty, 10))
BLAS.spr!('L', α, x, ALP_result_blas_lower)
@test ALP_result_julia_lower ≈ ALP_result_blas_lower[1:end-10]
ALP_result_blas_lower = reshape(pack(AL, :L), 1, length(ALP_result_julia_lower), 1)
BLAS.spr!('L', α, x, ALP_result_blas_lower)
@test ALP_result_julia_lower ≈ vec(ALP_result_blas_lower)
AUP_result_julia_upper = pack(α*x*x' + AU, :U)
AUP_result_blas_upper = pack(AU, :U)
BLAS.spr!('U', α, x, AUP_result_blas_upper)
@test AUP_result_julia_upper ≈ AUP_result_blas_upper
AUP_result_blas_upper = append!(pack(AU, :U), ones(elty, 10))
BLAS.spr!('U', α, x, AUP_result_blas_upper)
@test AUP_result_julia_upper ≈ AUP_result_blas_upper[1:end-10]
AUP_result_blas_upper = reshape(pack(AU, :U), 1, length(AUP_result_julia_upper), 1)
BLAS.spr!('U', α, x, AUP_result_blas_upper)
@test AUP_result_julia_upper ≈ vec(AUP_result_blas_upper)
end
end
end
#trsm
A = triu(rand(elty,n,n))
B = rand(elty,(n,n))
@test BLAS.trsm('L','U','N','N',one(elty),A,B) ≈ A\B
#will work for SymTridiagonal,Tridiagonal,Bidiagonal!
@testset "banded matrix mv" begin
@testset "gbmv" begin
TD = Tridiagonal(rand(elty,n-1),rand(elty,n),rand(elty,n-1))
x = rand(elty, n)
#put TD into the BLAS format!
fTD = zeros(elty,3,n)
fTD[1,2:n] = TD.du
fTD[2,:] = TD.d
fTD[3,1:n-1] = TD.dl
@test BLAS.gbmv('N',n,1,1,fTD,x) ≈ TD*x
y = rand(elty, n)
α = randn(elty)
β = randn(elty)
for xx in (x, view(x, n:-1:1)), yy in (y, view(y, n:-1:1))
@test BLAS.gbmv!('N',n,1,1,α,fTD,xx,β,deepcopy(yy)) ≈ α * TD * xx + β * yy
end
end
#will work for SymTridiagonal only!
@testset "sbmv and hbmv" begin
x = rand(elty,n)
if elty <: BlasReal
ST = SymTridiagonal(rand(elty,n),rand(elty,n-1))
#put TD into the BLAS format!
fST = zeros(elty,2,n)
fST[1,2:n] = ST.ev
fST[2,:] = ST.dv
@test BLAS.sbmv('U',1,fST,x) ≈ ST*x
y = rand(elty, n)
α = randn(elty)
β = randn(elty)
for xx in (x, view(x, n:-1:1)), yy in (y, view(y, n:-1:1))
@test BLAS.sbmv!('U',1,α,fST,xx,β,deepcopy(yy)) ≈ α * ST * xx + β * yy
end
else
dv = rand(real(elty),n)
ev = rand(elty,n-1)
bH = zeros(elty,2,n)
bH[1,2:n] = ev
bH[2,:] = dv
fullH = diagm(0 => dv, -1 => conj(ev), 1 => ev)
@test BLAS.hbmv('U',1,bH,x) ≈ fullH*x
y = rand(elty, n)
α = randn(elty)
β = randn(elty)
for xx in (x, view(x, n:-1:1)), yy in (y, view(y, n:-1:1))
@test BLAS.hbmv!('U',1,α,bH,xx,β,deepcopy(yy)) ≈ α * fullH * xx + β * yy
end
end
end
end
end
@testset "gemv" begin
@test all(BLAS.gemv('N', I4, o4) .== o4)
@test all(BLAS.gemv('T', I4, o4) .== o4)
@test all(BLAS.gemv('N', el2, I4, o4) .== el2 * o4)
@test all(BLAS.gemv('T', el2, I4, o4) .== el2 * o4)
@test_throws DimensionMismatch BLAS.gemv('N',I43,o4)
o4cp = copy(o4)
@test_throws DimensionMismatch BLAS.gemv!('T',one(elty),I43,o4,one(elty),o4cp)
@test_throws DimensionMismatch BLAS.gemv!('C',one(elty),I43,o4,one(elty),o4cp)
@test all(BLAS.gemv!('N', one(elty), I4, o4, elm1, o4cp) .== z4)
@test all(o4cp .== z4)
o4cp[:] = o4
@test all(BLAS.gemv!('T', one(elty), I4, o4, elm1, o4cp) .== z4)
@test all(o4cp .== z4)
@test all(BLAS.gemv('N', U4, o4) .== v41)
@test all(BLAS.gemv('N', U4, o4) .== v41)
@testset "non-standard strides" begin
A = rand(elty, 3, 4)
x = rand(elty, 5)
for y = (view(ones(elty, 5), 1:2:5), view(ones(elty, 7), 6:-2:2))
ycopy = copy(y)
@test BLAS.gemv!('N', elty(2), view(A, :, 2:2:4), view(x, 1:3:4), elty(3), y) ≈ 2*A[:,2:2:4]*x[1:3:4] + 3*ycopy
ycopy = copy(y)
@test BLAS.gemv!('N', elty(2), view(A, :, 4:-2:2), view(x, 1:3:4), elty(3), y) ≈ 2*A[:,4:-2:2]*x[1:3:4] + 3*ycopy
ycopy = copy(y)
@test BLAS.gemv!('N', elty(2), view(A, :, 2:2:4), view(x, 4:-3:1), elty(3), y) ≈ 2*A[:,2:2:4]*x[4:-3:1] + 3*ycopy
ycopy = copy(y)
@test BLAS.gemv!('N', elty(2), view(A, :, 4:-2:2), view(x, 4:-3:1), elty(3), y) ≈ 2*A[:,4:-2:2]*x[4:-3:1] + 3*ycopy
ycopy = copy(y)
@test BLAS.gemv!('N', elty(2), view(A, :, StepRangeLen(1,0,1)), view(x, 1:1), elty(3), y) ≈ 2*A[:,1:1]*x[1:1] + 3*ycopy # stride(A,2) == 0
end
@test BLAS.gemv!('N', elty(1), zeros(elty, 0, 5), zeros(elty, 5), elty(1), zeros(elty, 0)) == elty[] # empty matrix, stride(A,2) == 0
@test BLAS.gemv('N', elty(-1), view(A, 2:3, 1:2:3), view(x, 2:-1:1)) ≈ -1*A[2:3,1:2:3]*x[2:-1:1]
@test BLAS.gemv('N', view(A, 2:3, 3:-2:1), view(x, 1:2:3)) ≈ A[2:3,3:-2:1]*x[1:2:3]
for (trans, f) = (('T',transpose), ('C',adjoint))
for y = (view(ones(elty, 3), 1:2:3), view(ones(elty, 5), 4:-2:2))
ycopy = copy(y)
@test BLAS.gemv!(trans, elty(2), view(A, :, 2:2:4), view(x, 1:2:5), elty(3), y) ≈ 2*f(A[:,2:2:4])*x[1:2:5] + 3*ycopy
ycopy = copy(y)
@test BLAS.gemv!(trans, elty(2), view(A, :, 4:-2:2), view(x, 1:2:5), elty(3), y) ≈ 2*f(A[:,4:-2:2])*x[1:2:5] + 3*ycopy
ycopy = copy(y)
@test BLAS.gemv!(trans, elty(2), view(A, :, 2:2:4), view(x, 5:-2:1), elty(3), y) ≈ 2*f(A[:,2:2:4])*x[5:-2:1] + 3*ycopy
ycopy = copy(y)
@test BLAS.gemv!(trans, elty(2), view(A, :, 4:-2:2), view(x, 5:-2:1), elty(3), y) ≈ 2*f(A[:,4:-2:2])*x[5:-2:1] + 3*ycopy
end
@test BLAS.gemv!(trans, elty(2), view(A, :, StepRangeLen(1,0,1)), view(x, 1:2:5), elty(3), elty[1]) ≈ 2*f(A[:,1:1])*x[1:2:5] + elty[3] # stride(A,2) == 0
end
for trans = ('N', 'T', 'C')
@test_throws ErrorException BLAS.gemv(trans, view(A, 1:2:3, 1:2), view(x, 1:2)) # stride(A,1) must be 1
end
end
end
@testset "gemm" begin
@test all(BLAS.gemm('N', 'N', I4, I4) .== I4)
@test all(BLAS.gemm('N', 'T', I4, I4) .== I4)
@test all(BLAS.gemm('T', 'N', I4, I4) .== I4)
@test all(BLAS.gemm('T', 'T', I4, I4) .== I4)
@test all(BLAS.gemm('N', 'N', el2, I4, I4) .== el2 * I4)
@test all(BLAS.gemm('N', 'T', el2, I4, I4) .== el2 * I4)
@test all(BLAS.gemm('T', 'N', el2, I4, I4) .== el2 * I4)
@test all(LinearAlgebra.BLAS.gemm('T', 'T', el2, I4, I4) .== el2 * I4)
I4cp = copy(I4)
@test all(BLAS.gemm!('N', 'N', one(elty), I4, I4, elm1, I4cp) .== Z4)
@test all(I4cp .== Z4)
I4cp[:] = I4
@test all(BLAS.gemm!('N', 'T', one(elty), I4, I4, elm1, I4cp) .== Z4)
@test all(I4cp .== Z4)
I4cp[:] = I4
@test all(BLAS.gemm!('T', 'N', one(elty), I4, I4, elm1, I4cp) .== Z4)
@test all(I4cp .== Z4)
I4cp[:] = I4
@test all(BLAS.gemm!('T', 'T', one(elty), I4, I4, elm1, I4cp) .== Z4)
@test all(I4cp .== Z4)
@test all(BLAS.gemm('N', 'N', I4, U4) .== U4)
@test all(BLAS.gemm('N', 'T', I4, U4) .== L4)
@test_throws DimensionMismatch BLAS.gemm!('N','N', one(elty), I4, I4, elm1, Matrix{elty}(I, 5, 5))
@test_throws DimensionMismatch BLAS.gemm!('N','N', one(elty), I43, I4, elm1, I4)
@test_throws DimensionMismatch BLAS.gemm!('T','N', one(elty), I43, I4, elm1, I43)
@test_throws DimensionMismatch BLAS.gemm!('N','T', one(elty), I43, I43, elm1, I43)
@test_throws DimensionMismatch BLAS.gemm!('T','T', one(elty), I43, I43, elm1, Matrix{elty}(I, 3, 4))
end
@testset "gemm compared to (sy)(he)rk" begin
if eltype(elm1) <: Complex
@test all(triu(BLAS.herk('U', 'N', U4)) .== triu(BLAS.gemm('N', 'T', U4, U4)))
@test all(tril(BLAS.herk('L', 'N', U4)) .== tril(BLAS.gemm('N', 'T', U4, U4)))
@test all(triu(BLAS.herk('U', 'N', L4)) .== triu(BLAS.gemm('N', 'T', L4, L4)))
@test all(tril(BLAS.herk('L', 'N', L4)) .== tril(BLAS.gemm('N', 'T', L4, L4)))
@test all(triu(BLAS.herk('U', 'C', U4)) .== triu(BLAS.gemm('T', 'N', U4, U4)))
@test all(tril(BLAS.herk('L', 'C', U4)) .== tril(BLAS.gemm('T', 'N', U4, U4)))
@test all(triu(BLAS.herk('U', 'C', L4)) .== triu(BLAS.gemm('T', 'N', L4, L4)))
@test all(tril(BLAS.herk('L', 'C', L4)) .== tril(BLAS.gemm('T', 'N', L4, L4)))
ans = similar(L4)
@test all(tril(BLAS.herk('L','C', L4)) .== tril(BLAS.herk!('L', 'C', real(one(elty)), L4, real(zero(elty)), ans)))
@test all(LinearAlgebra.copytri!(ans, 'L') .== LinearAlgebra.BLAS.gemm('T', 'N', L4, L4))
@test_throws DimensionMismatch BLAS.herk!('L','N',real(one(elty)),Matrix{elty}(I, 5, 5),real(one(elty)), Matrix{elty}(I, 6, 6))
else
@test all(triu(BLAS.syrk('U', 'N', U4)) .== triu(BLAS.gemm('N', 'T', U4, U4)))
@test all(tril(BLAS.syrk('L', 'N', U4)) .== tril(BLAS.gemm('N', 'T', U4, U4)))
@test all(triu(BLAS.syrk('U', 'N', L4)) .== triu(BLAS.gemm('N', 'T', L4, L4)))
@test all(tril(BLAS.syrk('L', 'N', L4)) .== tril(BLAS.gemm('N', 'T', L4, L4)))
@test all(triu(BLAS.syrk('U', 'T', U4)) .== triu(BLAS.gemm('T', 'N', U4, U4)))
@test all(tril(BLAS.syrk('L', 'T', U4)) .== tril(BLAS.gemm('T', 'N', U4, U4)))
@test all(triu(BLAS.syrk('U', 'T', L4)) .== triu(BLAS.gemm('T', 'N', L4, L4)))
@test all(tril(BLAS.syrk('L', 'T', L4)) .== tril(BLAS.gemm('T', 'N', L4, L4)))
ans = similar(L4)
@test all(tril(BLAS.syrk('L','T', L4)) .== tril(BLAS.syrk!('L', 'T', one(elty), L4, zero(elty), ans)))
@test all(LinearAlgebra.copytri!(ans, 'L') .== BLAS.gemm('T', 'N', L4, L4))
@test_throws DimensionMismatch BLAS.syrk!('L','N',one(elty), Matrix{elty}(I, 5, 5),one(elty), Matrix{elty}(I, 6, 6))
end
end
end
@testset "syr for eltype $elty" for elty in (Float32, Float64, ComplexF32, ComplexF64)
A = rand(elty, 5, 5)
@test triu(A[1,:] * transpose(A[1,:])) ≈ BLAS.syr!('U', one(elty), A[1,:], zeros(elty, 5, 5))
@test tril(A[1,:] * transpose(A[1,:])) ≈ BLAS.syr!('L', one(elty), A[1,:], zeros(elty, 5, 5))
@test triu(A[1,:] * transpose(A[1,:])) ≈ BLAS.syr!('U', one(elty), view(A, 1, :), zeros(elty, 5, 5))
@test tril(A[1,:] * transpose(A[1,:])) ≈ BLAS.syr!('L', one(elty), view(A, 1, :), zeros(elty, 5, 5))
end
@testset "her for eltype $elty" for elty in (ComplexF32, ComplexF64)
A = rand(elty, 5, 5)
@test triu(A[1,:] * A[1,:]') ≈ BLAS.her!('U', one(real(elty)), A[1,:], zeros(elty, 5, 5))
@test tril(A[1,:] * A[1,:]') ≈ BLAS.her!('L', one(real(elty)), A[1,:], zeros(elty, 5, 5))
@test triu(A[1,:] * A[1,:]') ≈ BLAS.her!('U', one(real(elty)), view(A, 1, :), zeros(elty, 5, 5))
@test tril(A[1,:] * A[1,:]') ≈ BLAS.her!('L', one(real(elty)), view(A, 1, :), zeros(elty, 5, 5))
end
struct WrappedArray{T,N} <: AbstractArray{T,N}
A::Array{T,N}
end
Base.size(A::WrappedArray) = size(A.A)
Base.getindex(A::WrappedArray, i::Int) = A.A[i]
Base.getindex(A::WrappedArray{T, N}, I::Vararg{Int, N}) where {T, N} = A.A[I...]
Base.setindex!(A::WrappedArray, v, i::Int) = setindex!(A.A, v, i)
Base.setindex!(A::WrappedArray{T, N}, v, I::Vararg{Int, N}) where {T, N} = setindex!(A.A, v, I...)
Base.unsafe_convert(::Type{Ptr{T}}, A::WrappedArray{T}) where T = Base.unsafe_convert(Ptr{T}, A.A)
Base.strides(A::WrappedArray) = strides(A.A)
Base.elsize(::Type{WrappedArray{T,N}}) where {T,N} = Base.elsize(Array{T,N})
@testset "strided interface adjtrans" begin
x = WrappedArray([1, 2, 3, 4])
@test stride(x,1) == 1
@test stride(x,2) == stride(x,3) == 4
@test strides(x') == strides(transpose(x)) == (4,1)
@test pointer(x') == pointer(transpose(x)) == pointer(x)
@test_throws BoundsError stride(x,0)
A = WrappedArray([1 2; 3 4; 5 6])
@test stride(A,1) == 1
@test stride(A,2) == 3
@test stride(A,3) == stride(A,4) >= 6
@test strides(A') == strides(transpose(A)) == (3,1)
@test pointer(A') == pointer(transpose(A)) == pointer(A)
@test_throws BoundsError stride(A,0)
y = WrappedArray([1+im, 2, 3, 4])
@test strides(transpose(y)) == (4,1)
@test pointer(transpose(y)) == pointer(y)
@test_throws MethodError strides(y')
@test_throws ErrorException pointer(y')
B = WrappedArray([1+im 2; 3 4; 5 6])
@test strides(transpose(B)) == (3,1)
@test pointer(transpose(B)) == pointer(B)
@test_throws MethodError strides(B')
@test_throws ErrorException pointer(B')
@test_throws MethodError stride(1:5,0)
@test_throws MethodError stride(1:5,1)
@test_throws MethodError stride(1:5,2)
@test_throws MethodError strides(transpose(1:5))
@test_throws MethodError strides((1:5)')
@test_throws ErrorException pointer(transpose(1:5))
@test_throws ErrorException pointer((1:5)')
end
@testset "strided interface blas" begin
for elty in (Float32, Float64, ComplexF32, ComplexF64)
# Level 1
x = WrappedArray(elty[1, 2, 3, 4])
y = WrappedArray(elty[5, 6, 7, 8])
BLAS.blascopy!(2, x, 1, y, 2)
@test y == WrappedArray(elty[1, 6, 2, 8])
BLAS.scal!(2, elty(2), x, 1)
@test x == WrappedArray(elty[2, 4, 3, 4])
@test BLAS.nrm2(1, x, 2) == elty(2)
@test BLAS.nrm2(x) == BLAS.nrm2(x.A)
BLAS.asum(x) == elty(13)
BLAS.axpy!(4, elty(2), x, 1, y, 1)
@test y == WrappedArray(elty[5, 14, 8, 16])
BLAS.axpby!(elty(2), x, elty(3), y)
@test y == WrappedArray(elty[19, 50, 30, 56])
@test BLAS.iamax(x) == 2
M = fill(elty(1.0), 3, 3)
@test BLAS.scal!(elty(2), view(M,:,2)) === view(M,:,2)
@test BLAS.scal!(elty(3), view(M,3,:)) === view(M,3,:)
@test M == elty[1. 2. 1.; 1. 2. 1.; 3. 6. 3.]
# Level 2
A = WrappedArray(elty[1 2; 3 4])
x = WrappedArray(elty[1, 2])
y = WrappedArray(elty[3, 4])
@test BLAS.gemv!('N', elty(2), A, x, elty(1), y) isa WrappedArray{elty,1}
@test y == WrappedArray(elty[13, 26])
@test BLAS.gbmv!('N', 2, 1, 0, elty(2), A, x, elty(1), y) isa WrappedArray{elty,1}
@test y == WrappedArray(elty[15, 40])
@test BLAS.symv!('U', elty(2), A, x, elty(1), y) isa WrappedArray{elty,1}
@test y == WrappedArray(elty[25, 60])
@test BLAS.trmv!('U', 'N', 'N', A, y) isa WrappedArray{elty,1}
@test y == WrappedArray(elty[145, 240])
@test BLAS.trsv!('U', 'N', 'N', A, y) isa WrappedArray{elty,1}
@test y == WrappedArray(elty[25,60])
@test BLAS.ger!(elty(2), x, y, A) isa WrappedArray{elty,2}
@test A == WrappedArray(elty[51 122; 103 244])
@test BLAS.syr!('L', elty(2), x, A) isa WrappedArray{elty,2}
@test A == WrappedArray(elty[53 122; 107 252])
# Level 3
A = WrappedArray(elty[1 2; 3 4])
B = WrappedArray(elty[5 6; 7 8])
C = WrappedArray(elty[9 10; 11 12])
BLAS.gemm!('N', 'N', elty(2), A, B, elty(1), C) isa WrappedArray{elty,2}
@test C == WrappedArray([47 54; 97 112])
BLAS.symm!('L', 'U', elty(2), A, B, elty(1), C) isa WrappedArray{elty,2}
@test C == WrappedArray([85 98; 173 200])
BLAS.syrk!('U', 'N', elty(2), A, elty(1), C) isa WrappedArray{elty,2}
@test C == WrappedArray([95 120; 173 250])
BLAS.syr2k!('U', 'N', elty(2), A, B, elty(1), C) isa WrappedArray{elty,2}
@test C == WrappedArray([163 244; 173 462])
BLAS.trmm!('L', 'U', 'N', 'N', elty(2), A, B) isa WrappedArray{elty,2}
@test B == WrappedArray([38 44; 56 64])
BLAS.trsm!('L', 'U', 'N', 'N', elty(2), A, B) isa WrappedArray{elty,2}
@test B == WrappedArray([20 24; 28 32])
end
for elty in (Float32, Float64)
# Level 1
x = WrappedArray(elty[1, 2, 3, 4])
y = WrappedArray(elty[5, 6, 7, 8])
@test BLAS.dot(2, x, 1, y, 2) == elty(19)
# Level 2
A = WrappedArray(elty[1 2; 3 4])
x = WrappedArray(elty[1, 2])
y = WrappedArray(elty[3, 4])
BLAS.sbmv!('U', 1, elty(2), A, x, elty(1), y) isa WrappedArray{elty,1}
@test y == WrappedArray(elty[17,24])
end
for elty in (ComplexF32, ComplexF64)
# Level 1
x = WrappedArray(elty[1+im, 2+2im, 3+3im, 4+im])
y = WrappedArray(elty[5-im, 6-2im, 7-3im, 8-im])
@test BLAS.dotc(2, x, 1, y, 2) == elty(12-26im)
@test BLAS.dotu(2, x, 1, y, 2) == elty(26+12im)
# Level 2
A = WrappedArray(elty[1+im 2+2im; 3+3im 4+4im])
x = WrappedArray(elty[1+im, 2+2im])
y = WrappedArray(elty[5-im, 6-2im])
@test BLAS.hemv!('U', elty(2), A, x, elty(1), y) isa WrappedArray{elty,1}
@test y == WrappedArray(elty[7+17im, 30+14im])
BLAS.hbmv!('U', 1, elty(2), A, x, elty(1), y) isa WrappedArray{elty,1}
@test y == WrappedArray(elty[13+39im, 54+30im])
@test BLAS.her!('L', real(elty(2)), x, A) isa WrappedArray{elty,2}
@test A == WrappedArray(elty[5 2+2im; 11+3im 20])
# Level 3
A = WrappedArray(elty[1+im 2+2im; 3+3im 4+4im])
B = WrappedArray(elty[1+im 2+2im; 3+3im 4+4im])
C = WrappedArray(elty[1+im 2+2im; 3+3im 4+4im])
@test BLAS.hemm!('L', 'U', elty(2), A, B, elty(1), C) isa WrappedArray{elty,2}
@test C == WrappedArray([3+27im 6+38im; 35+27im 52+36im])
@test BLAS.herk!('U', 'N', real(elty(2)), A, real(elty(1)), C) isa WrappedArray{elty,2}
@test C == WrappedArray([23 50+38im; 35+27im 152])
@test BLAS.her2k!('U', 'N', elty(2), A, B, real(elty(1)), C) isa WrappedArray{elty,2}
@test C == WrappedArray([63 138+38im; 35+27im 352])
end
end
@testset "get_set_num_threads" begin
default = BLAS.get_num_threads()
@test default isa Int
@test default > 0
BLAS.set_num_threads(1)
@test BLAS.get_num_threads() === 1
BLAS.set_num_threads(default)
@test BLAS.get_num_threads() === default
end
@testset "test for 0-strides" for elty in (Float32, Float64, ComplexF32, ComplexF64)
A = randn(elty, 10, 10);
a = view([randn(elty)], 1 .+ 0(1:10))
b = view([randn(elty)], 1 .+ 0(1:10))
α, β = randn(elty), randn(elty)
@testset "dot/dotc/dotu" begin
if elty <: Real
@test BLAS.dot(a,b) ≈ sum(a.*b)
else
@test BLAS.dotc(a,b) ≈ sum(conj(a).*b)
@test BLAS.dotu(a,b) ≈ sum(a.*b)
end
end
@testset "axp(b)y!" begin
@test BLAS.axpy!(α,a,copy(b)) ≈ α*a + b
@test BLAS.axpby!(α,a,β,copy(b)) ≈ α*a + β*b
@test_throws "dest" BLAS.axpy!(α,a,b)
@test_throws "dest" BLAS.axpby!(α,a,β,b)
end
@test BLAS.iamax(a) == 0
@test_throws "dest" BLAS.scal!(b[1], a)
@testset "nrm2/asum" begin # OpenBLAS allways return 0.0
@test_throws "input" BLAS.nrm2(a)
@test_throws "input" BLAS.asum(a)
end
# All level2 reject 0-stride array.
@testset "gemv!" begin
@test_throws "input" BLAS.gemv!('N', true, A, a, false, copy(b))
@test_throws "dest" BLAS.gemv!('N', true, A, copy(a), false, b)
end
end
end # module TestBLAS