forked from open-mmlab/mmpose
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhourglass52_mpii_384x384.py
128 lines (121 loc) · 3.37 KB
/
hourglass52_mpii_384x384.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
log_level = 'INFO'
load_from = None
resume_from = None
dist_params = dict(backend='nccl')
workflow = [('train', 1)]
checkpoint_config = dict(interval=10)
evaluation = dict(interval=10, metric='PCKh', key_indicator='PCKh')
optimizer = dict(
type='Adam',
lr=5e-4,
)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=0.001,
step=[170, 200])
total_epochs = 210
log_config = dict(
interval=50, hooks=[
dict(type='TextLoggerHook'),
])
channel_cfg = dict(
num_output_channels=16,
dataset_joints=16,
dataset_channel=list(range(16)),
inference_channel=list(range(16)))
# model settings
model = dict(
type='TopDown',
pretrained=None,
backbone=dict(
type='HourglassNet',
num_stacks=1,
),
keypoint_head=dict(
type='TopDownMultiStageHead',
in_channels=256,
out_channels=channel_cfg['num_output_channels'],
num_stages=1,
num_deconv_layers=0,
extra=dict(final_conv_kernel=1, ),
),
train_cfg=dict(),
test_cfg=dict(
flip_test=True,
post_process=True,
shift_heatmap=True,
unbiased_decoding=False,
modulate_kernel=11),
loss_pose=dict(type='JointsMSELoss', use_target_weight=True))
data_cfg = dict(
image_size=[384, 384],
heatmap_size=[96, 96],
num_output_channels=channel_cfg['num_output_channels'],
num_joints=channel_cfg['dataset_joints'],
dataset_channel=channel_cfg['dataset_channel'],
inference_channel=channel_cfg['inference_channel'],
use_gt_bbox=True,
bbox_file=None,
)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='TopDownRandomFlip', flip_prob=0.5),
dict(
type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5),
dict(type='TopDownAffine'),
dict(type='ToTensor'),
dict(
type='NormalizeTensor',
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
dict(type='TopDownGenerateTarget', sigma=2),
dict(
type='Collect',
keys=['img', 'target', 'target_weight'],
meta_keys=[
'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
'rotation', 'flip_pairs'
]),
]
val_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='TopDownAffine'),
dict(type='ToTensor'),
dict(
type='NormalizeTensor',
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
dict(
type='Collect',
keys=[
'img',
],
meta_keys=['image_file', 'center', 'scale', 'rotation', 'flip_pairs']),
]
data_root = 'data/mpii'
data = dict(
samples_per_gpu=32,
workers_per_gpu=2,
train=dict(
type='TopDownMpiiDataset',
ann_file=f'{data_root}/annotations/mpii_train.json',
img_prefix=f'{data_root}/images/',
data_cfg=data_cfg,
pipeline=train_pipeline),
val=dict(
type='TopDownMpiiDataset',
ann_file=f'{data_root}/annotations/mpii_val.json',
img_prefix=f'{data_root}/images/',
data_cfg=data_cfg,
pipeline=val_pipeline),
test=dict(
type='TopDownMpiiDataset',
ann_file=f'{data_root}/annotations/mpii_test.json',
img_prefix=f'{data_root}/images/',
data_cfg=data_cfg,
pipeline=val_pipeline),
)