Skip to content

Latest commit

 

History

History
53 lines (44 loc) · 1.17 KB

training.md

File metadata and controls

53 lines (44 loc) · 1.17 KB

Training Steps

Locally

$ python3 -m venv your_venv_name
$ source your_venv_name/bin/activate
$ git clone https://github.com/ml5js/training-charRNN
$ cd training-charRNN
$ pip install -r requirements.txt
$ python train.py --data_path /path/to/data/file.txt

With Spell

pip install spell
spell login
spell upload input.txt
spell run "python train.py --data_path /NAME/input.txt" -m uploads/NAME/input.txt

More Training Options

# This are the hyperparameters you can change to fit your data
python train.py --data_path=./data/file.txt \
--rnn_size 128 \
--num_layers 2 \
--seq_length 50 \
--batch_size 50 \
--num_epochs 50 \
--save_checkpoints ./checkpoints \
--save_model ./models

Windows Training Steps

Locally

# cd into the folder you want to contain python virtual environment folder
# and training-charRNN project
> python -m venv your_venv_name
> your_venv_name\Scripts\Activate.ps1
# Now you are in the virtual environment
> git clone https://github.com/ml5js/training-charRNN
> cd training-charRNN
> pip install -r requirements.txt
> python train.py --data_path /path/to/data/file.txt
# After finishing all the training
> deactivate