-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
148 lines (119 loc) · 5.04 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import os
import json
import argparse
import torch
import torch.optim as optim
from glow import SqueezeWave, SqueezeWaveLoss
from dataset import AudiobookDataset
from dataset import train_collate
from dataset import test_collate
from utils.dsp import save_wav
import numpy as np
#from mel2samp import Mel2Samp
def save_checkpoint(device, model, optimizer, checkpoint_dir, epoch):
checkpoint_path = os.path.join(
checkpoint_dir, "checkpoint_step{:06d}.pth".format(epoch))
optimizer_state = optimizer.state_dict()
torch.save({
"state_dict": model.state_dict(),
"optimizer": optimizer_state,
"epoch": epoch
}, checkpoint_path)
print("Saved checkpoint:", checkpoint_path)
def train(args, model, device, train_loader, optimizer, epoch, sigma=1.0):
model.train()
criterion = SqueezeWaveLoss(sigma)
for batch_idx, (m, x, _) in enumerate(train_loader):
x, m = x.to(device), m.to(device)
model.zero_grad()
outputs = model((m, x))
loss = criterion(outputs)
if np.isinf(loss.item()) or np.isnan(loss.item()):
loss = criterion(outputs)
loss.backward()
optimizer.step()
#if batch_idx % 10 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(m), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
def test(model, device, test_loader, checkpoint_dir, epoch, sigma=1.0):
model.eval()
sample_dir = os.path.join(checkpoint_dir, 'sample_{0:06d}'.format(epoch))
os.makedirs(sample_dir, exist_ok=True)
with torch.no_grad():
for m, _, fname in test_loader:
m = m.to(device)
audio = model.infer(m, sigma=sigma).float()
audio = audio.cpu().numpy()
audio[np.where(np.isfinite(audio)==False)] = 0
for f, a in zip(fname, audio):
target_path = os.path.join(sample_dir, os.path.basename(f))
save_wav(a, target_path)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Train or run some neural net')
parser.add_argument('-d', '--data', type=str, default='./data', help='dataset directory')
parser.add_argument('--epochs', type=int, default=10000,
help='number of epochs to train (default: 14)')
parser.add_argument('--batch-size', type=int, default=96, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--lr', type=float, default=4e-4, metavar='LR',
help='learning rate (default: 1.0)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
args = parser.parse_args()
torch.manual_seed(0)
np.random.seed(0)
data_path = args.data
use_cuda = not args.no_cuda and torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
kwargs = {'num_workers': 4, 'pin_memory': True} if use_cuda else {}
torch.autograd.set_detect_anomaly(True)
data_config = {
"training_files": "train_files.txt",
"segment_length": 16384,
"sampling_rate": 22050,
"filter_length": 1024,
"hop_length": 256,
"win_length": 1024,
"mel_fmin": 0.0,
"mel_fmax": 8000.0
}
#trainset = Mel2Samp(128, **data_config)
#train_loader = torch.utils.data.DataLoader(trainset, num_workers=0, shuffle=False,
# batch_size=args.batch_size,
# pin_memory=False,
# drop_last=True)
with open(os.path.join(data_path, 'train.json'), 'r') as f:
train_index = json.load(f)
with open(os.path.join(data_path, 'test.json'), 'r') as f:
test_index = json.load(f)
train_loader = torch.utils.data.DataLoader(
AudiobookDataset(train_index),
collate_fn=train_collate,
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
AudiobookDataset(test_index),
collate_fn=test_collate,
batch_size=1, shuffle=False, **kwargs)
squeezewave_config = {
'n_mel_channels': 80,
'n_flows': 12,
'n_audio_channel': 128,
'n_early_every': 2,
'n_early_size': 16,
'WN_config': {
"n_layers": 8,
"n_channels": 256,
"kernel_size": 3
}
}
model = SqueezeWave(**squeezewave_config).to(device)
optimizer = optim.Adam(model.parameters(), lr=args.lr)
checkpoint_dir = 'checkpoints'
os.makedirs(checkpoint_dir, exist_ok=True)
for epoch in range(1, args.epochs + 1):
print(f'epoch {epoch}')
train(args, model, device, train_loader, optimizer, epoch)
if epoch % 10 == 0:
test(model, device, test_loader, checkpoint_dir, epoch)
save_checkpoint(device, model, optimizer, checkpoint_dir, epoch)