-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathcnn_get_batch_mpii.m
186 lines (163 loc) · 4.99 KB
/
cnn_get_batch_mpii.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
function [images, labels] = cnn_get_batch_mpii(image_paths, label_paths, varargin)
% data augmentation:
% - up to 32px random shifts
% - random left/right flipping
opts.alpha = 0.5;
opts.imageSize = [227, 227];
opts.labelSize = [227, 227];
opts.border = [29, 29] ;
opts.keepAspect = true ;
opts.numAugments = 1 ;
opts.transformation = 'none' ;
opts.averageImage = [] ;
opts.rgbVariance = zeros(0,3,'single') ;
opts.interpolation = 'bilinear' ;
opts.numThreads = 1 ;
opts.prefetch = false ;
opts = vl_argparse(opts, varargin);
opts.labelSize = double(opts.labelSize);
opts.imageSize = double(opts.imageSize);
%% data set specific parameters
SC_BIAS = 0.6 ;
AVG_HEAD_SIZE = 90; % pixels
% fetch is true if images is a list of filenames (instead of
% a cell array of images)
fetch = numel(image_paths) >= 1 && ischar(image_paths{1}) ;
% prefetch is used to load images in a separate thread
prefetch = fetch & opts.prefetch ;
if prefetch
vl_imreadjpeg(image_paths, 'numThreads', opts.numThreads, 'prefetch') ;
images = [];
labels = [];
return ;
end
if fetch
im = vl_imreadjpeg(image_paths,'numThreads', opts.numThreads) ;
else
im = image_paths ;
end
tfs = [] ;
switch opts.transformation
case 'none'
tfs = [
.5 ;
.5 ;
0 ] ;
case 'f5'
tfs = [...
.5 0 0 1 1 .5 0 0 1 1 ;
.5 0 1 0 1 .5 0 1 0 1 ;
0 0 0 0 0 1 1 1 1 1] ;
case 'f25'
[tx,ty] = meshgrid(linspace(0,1,5)) ;
tfs = [tx(:)' ; ty(:)' ; zeros(1,numel(tx))] ;
tfs_ = tfs ;
tfs_(3,:) = 1 ;
tfs = [tfs,tfs_] ;
case 'stretch'
otherwise
error('Uknown transformations %s', opts.transformation) ;
end
[~,transformations] = sort(rand(size(tfs,2), numel(image_paths)), 1) ;
if ~isempty(opts.rgbVariance) && isempty(opts.averageImage)
opts.averageImage = zeros(1,1,3) ;
end
if numel(opts.averageImage) == 3
opts.averageImage = reshape(opts.averageImage, 1,1,3) ;
end
images = zeros(opts.imageSize(1), opts.imageSize(2), 3, ...
numel(image_paths)*opts.numAugments, 'single');
% make label the same size as the images
labels = -ones(opts.labelSize(1), opts.labelSize(2), opts.labelSize(3), ...
numel(image_paths)*opts.numAugments, 'single');
si = 1 ;
for i=1:numel(image_paths)
% acquire image
if isempty(im{i})
imt = imread(image_paths{i}) ;
imt = single(imt) ; % faster than im2single (and multiplies by 255)
else
imt = im{i} ;
end
if size(imt,3) == 1
imt = cat(3, imt, imt, imt) ;
end
% resize
w = size(imt,2) ;
h = size(imt,1) ;
factor = [(opts.imageSize(1)+opts.border(1))/h ...
(opts.imageSize(2)+opts.border(2))/w];
if opts.keepAspect
factor = max(factor) ;
end
if any(abs(factor - 1) > 0.0001)
imt = imresize(imt, ...
'scale', factor, ...
'method', opts.interpolation) ;
end
label = load(label_paths{i});
% crop & flip
w = size(imt,2) ;
h = size(imt,1) ;
for ai = 1:opts.numAugments
switch opts.transformation
case 'stretch'
sz = round(min(opts.imageSize(1:2)' .* (1-0.1+0.2*rand(2,1)), [w;h])) ;
dx = randi(w - sz(2) + 1, 1) ;
dy = randi(h - sz(1) + 1, 1) ;
flip = rand > 0.5 ;
otherwise
tf = tfs(:, transformations(mod(ai-1, numel(transformations)) + 1)) ;
sz = opts.imageSize(1:2) ;
dx = floor((w - sz(2)) * tf(2)) + 1 ;
dy = floor((h - sz(1)) * tf(1)) + 1 ;
flip = tf(3) ;
end
sx = round(linspace(dx, sz(2)+dx-1, opts.imageSize(2))) ;
sy = round(linspace(dy, sz(1)+dy-1, opts.imageSize(1))) ;
if flip, sx = fliplr(sx) ; end
if ~isempty(opts.averageImage)
offset = opts.averageImage ;
if ~isempty(opts.rgbVariance)
offset = bsxfun(@plus, offset, reshape(opts.rgbVariance * randn(3,1), 1,1,3)) ;
end
images(:,:,:,si) = bsxfun(@minus, imt(sy,sx,:), offset) ;
else
images(:,:,:,si) = imt(sy,sx,:) ;
end
% compute annotation
if ~isfield(label, 'x') || ~isfield(label, 'y')
si = si + 1; continue;
end
lx = label.x - dx + 1;
ly = label.y - dy + 1;
lhx = label.head([1,3]) - dx + 1;
lhy = label.head([2,4]) - dy + 1;
loc_lv = (1 <= lx & lx <= opts.imageSize(2) & ...
1 <= ly & ly <= opts.imageSize(1));
if flip,
lx = opts.imageSize(2) - lx + 1;
lhx([2,1]) = opts.imageSize(2) - lhx([1,2]) + 1;
lid = flip_mpii_annotation(label.id);
else
lid = label.id;
end
head_size = norm(label.head(3:4)-label.head(1:2));
loc_heat = -ones(opts.labelSize(1:2));
for j = 1:numel(lx)
loc_heat(:) = -1;
[xx,yy] = meshgrid(1:opts.labelSize(2), ...
1:opts.labelSize(1));
radius = opts.alpha * SC_BIAS * head_size;
I = (sqrt((yy-ly(j)).^2 + (xx-lx(j)).^2) <= radius);
loc_heat(I) = 1;
labels(:,:,lid(j),si) = loc_heat;
end
si = si + 1 ;
end
end
function fid = flip_mpii_annotation(id)
map = [6,5,4,3,2,1,...
7,8,9,10,...
16,15,14,13,12,11];
fid = map(id);