-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathdetector.py
979 lines (822 loc) · 35.9 KB
/
detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
#
# Copyright © 2022-present Peter M. Stahl pemistahl@gmail.com
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either expressed or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import Counter
from dataclasses import dataclass
from decimal import Decimal
from math import exp
from typing import NamedTuple, Optional
from ._constant import (
CHARS_TO_LANGUAGES_MAPPING,
JAPANESE_CHARACTER_SET,
TOKENS_WITHOUT_WHITESPACE,
TOKENS_WITH_OPTIONAL_WHITESPACE,
)
from .language import Language, _Alphabet
from ._model import (
_load_ngram_probability_model,
_load_ngram_count_model,
_create_ngrams,
_create_lower_order_ngrams,
_NgramModelType,
)
_UNIGRAM_MODELS: dict[Language, dict[str, float]] = {}
_BIGRAM_MODELS: dict[Language, dict[str, float]] = {}
_TRIGRAM_MODELS: dict[Language, dict[str, float]] = {}
_QUADRIGRAM_MODELS: dict[Language, dict[str, float]] = {}
_FIVEGRAM_MODELS: dict[Language, dict[str, float]] = {}
_UNIQUE_UNIGRAM_MODELS: dict[Language, frozenset[str]] = {}
_UNIQUE_BIGRAM_MODELS: dict[Language, frozenset[str]] = {}
_UNIQUE_TRIGRAM_MODELS: dict[Language, frozenset[str]] = {}
_UNIQUE_QUADRIGRAM_MODELS: dict[Language, frozenset[str]] = {}
_UNIQUE_FIVEGRAM_MODELS: dict[Language, frozenset[str]] = {}
_MOST_COMMON_UNIGRAM_MODELS: dict[Language, frozenset[str]] = {}
_MOST_COMMON_BIGRAM_MODELS: dict[Language, frozenset[str]] = {}
_MOST_COMMON_TRIGRAM_MODELS: dict[Language, frozenset[str]] = {}
_MOST_COMMON_QUADRIGRAM_MODELS: dict[Language, frozenset[str]] = {}
_MOST_COMMON_FIVEGRAM_MODELS: dict[Language, frozenset[str]] = {}
_LANGUAGES_WITH_SINGLE_UNIQUE_SCRIPT: frozenset[Language] = (
Language.all_with_single_unique_script()
)
_HIGH_ACCURACY_MODE_MAX_TEXT_LENGTH = 120
def _split_text_into_words(text: str) -> list[str]:
return TOKENS_WITHOUT_WHITESPACE.findall(text.lower())
def _load_count_model(
language_models: dict[Language, frozenset[str]],
language: Language,
ngram_length: int,
model_type: _NgramModelType,
) -> bool:
if language in language_models:
return True
model = _load_ngram_count_model(language, ngram_length, model_type)
if model is not None:
language_models[language] = model.ngrams
return True
return False
def _load_probability_model(
language_models: dict[Language, dict[str, float]],
language: Language,
ngram_length: int,
) -> bool:
if language in language_models:
return True
model = _load_ngram_probability_model(language, ngram_length)
if model is not None:
language_models[language] = model.ngrams
return True
return False
def _search_unique_ngrams(
language_models: dict[Language, frozenset[str]],
language: Language,
ngrams: frozenset[str],
) -> Optional[Language]:
if language in language_models:
for ngram in ngrams:
if ngram in language_models[language]:
return language
return None
def _search_most_common_ngrams(
language_models: dict[Language, frozenset[str]],
language: Language,
ngrams: frozenset[str],
is_built_from_one_language: bool,
) -> Optional[Language]:
if is_built_from_one_language and language in language_models:
for ngram in ngrams:
if ngram in language_models[language]:
return language
return None
def _sum_up_probabilities(
probabilities: list[dict[Language, float]],
unigram_counts: Optional[Counter[Language]],
filtered_languages: frozenset[Language],
) -> dict[Language, Decimal]:
summed_up_probabilities = {}
for language in filtered_languages:
result = 0.0
for dct in probabilities:
if language in dct:
result += dct[language]
if unigram_counts is not None and language in unigram_counts:
result /= unigram_counts[language]
if result != 0:
# Use Decimal instead of float to prevent numerical underflow
summed_up_probabilities[language] = _compute_exponent(result)
return summed_up_probabilities
def _compute_exponent(value: float) -> Decimal:
exponent = exp(value)
if exponent > 0:
return Decimal(exponent)
return Decimal(value).exp()
def _sort_confidence_values(values: list["ConfidenceValue"]):
values.sort(key=lambda tup: (-tup[1], tup[0]))
def _collect_languages_with_unique_characters(
languages: frozenset[Language],
) -> frozenset[Language]:
return frozenset(
{language for language in languages if language._unique_characters is not None}
)
def _collect_single_language_alphabets(
languages: frozenset[Language],
) -> dict[_Alphabet, Language]:
return {
alphabet: language
for alphabet, language in _Alphabet.all_supporting_single_language().items()
if language in languages
}
def _merge_adjacent_results(
results: list["DetectionResult"], mergeable_result_indices: list[int]
):
mergeable_result_indices.sort(reverse=True)
for i in mergeable_result_indices:
if i == 0:
results[i + 1] = DetectionResult(
start_index=results[i].start_index,
end_index=results[i + 1].end_index,
word_count=results[i].word_count + results[i + 1].word_count,
language=results[i + 1].language,
)
else:
results[i - 1] = DetectionResult(
start_index=results[i - 1].start_index,
end_index=results[i].end_index,
word_count=results[i - 1].word_count + results[i].word_count,
language=results[i - 1].language,
)
del results[i]
if len(results) == 1:
break
class ConfidenceValue(NamedTuple):
"""This class describes a language's confidence value.
Attributes:
language (Language):
The language associated with this confidence value.
value (float):
The language's confidence value which lies between 0.0 and 1.0.
"""
language: Language
value: float
class DetectionResult(NamedTuple):
"""This class describes a contiguous single-language
text section within a possibly mixed-language text.
Attributes:
start_index (int):
The start index of the identified single-language substring.
end_index (int):
The end index of the identified single-language substring.
word_count (int):
The number of words being part of the identified
single-language substring.
language (Language):
The detected language of the identified single-language substring.
"""
start_index: int
end_index: int
word_count: int
language: Language
@dataclass
class LanguageDetector:
"""This class detects the language of text."""
_languages: frozenset[Language]
_minimum_relative_distance: float
_is_low_accuracy_mode_enabled: bool
_is_built_from_one_language: bool
_languages_with_unique_characters: frozenset[Language]
_single_language_alphabets: dict[_Alphabet, Language]
_unigram_language_models: dict[Language, dict[str, float]]
_bigram_language_models: dict[Language, dict[str, float]]
_trigram_language_models: dict[Language, dict[str, float]]
_quadrigram_language_models: dict[Language, dict[str, float]]
_fivegram_language_models: dict[Language, dict[str, float]]
_unique_unigram_language_models: dict[Language, frozenset[str]]
_unique_bigram_language_models: dict[Language, frozenset[str]]
_unique_trigram_language_models: dict[Language, frozenset[str]]
_unique_quadrigram_language_models: dict[Language, frozenset[str]]
_unique_fivegram_language_models: dict[Language, frozenset[str]]
_most_common_unigram_language_models: dict[Language, frozenset[str]]
_most_common_bigram_language_models: dict[Language, frozenset[str]]
_most_common_trigram_language_models: dict[Language, frozenset[str]]
_most_common_quadrigram_language_models: dict[Language, frozenset[str]]
_most_common_fivegram_language_models: dict[Language, frozenset[str]]
def __repr__(self):
languages = sorted([language.name for language in self._languages])
return (
"LanguageDetector("
f"_languages={languages}, "
f"_minimum_relative_distance={self._minimum_relative_distance})"
)
@classmethod
def _from(
cls,
languages: frozenset[Language],
minimum_relative_distance: float,
is_every_language_model_preloaded: bool,
is_low_accuracy_mode_enabled: bool,
) -> "LanguageDetector":
is_built_from_one_language = len(languages) == 1
languages_with_unique_characters = _collect_languages_with_unique_characters(
languages
)
single_language_alphabets = _collect_single_language_alphabets(languages)
detector = LanguageDetector(
languages,
minimum_relative_distance,
is_low_accuracy_mode_enabled,
is_built_from_one_language,
languages_with_unique_characters,
single_language_alphabets,
_UNIGRAM_MODELS,
_BIGRAM_MODELS,
_TRIGRAM_MODELS,
_QUADRIGRAM_MODELS,
_FIVEGRAM_MODELS,
_UNIQUE_UNIGRAM_MODELS,
_UNIQUE_BIGRAM_MODELS,
_UNIQUE_TRIGRAM_MODELS,
_UNIQUE_QUADRIGRAM_MODELS,
_UNIQUE_FIVEGRAM_MODELS,
_MOST_COMMON_UNIGRAM_MODELS,
_MOST_COMMON_BIGRAM_MODELS,
_MOST_COMMON_TRIGRAM_MODELS,
_MOST_COMMON_QUADRIGRAM_MODELS,
_MOST_COMMON_FIVEGRAM_MODELS,
)
if is_every_language_model_preloaded:
detector._preload_language_models()
if is_built_from_one_language or is_low_accuracy_mode_enabled:
detector._preload_unique_ngram_models()
if is_built_from_one_language:
detector._preload_most_common_ngram_models()
return detector
def _preload_unique_ngram_models(self):
for language in self._languages:
_load_count_model(
self._unique_unigram_language_models,
language,
1,
_NgramModelType.UNIQUE,
)
_load_count_model(
self._unique_bigram_language_models, language, 2, _NgramModelType.UNIQUE
)
_load_count_model(
self._unique_trigram_language_models,
language,
3,
_NgramModelType.UNIQUE,
)
_load_count_model(
self._unique_quadrigram_language_models,
language,
4,
_NgramModelType.UNIQUE,
)
_load_count_model(
self._unique_fivegram_language_models,
language,
5,
_NgramModelType.UNIQUE,
)
def _preload_most_common_ngram_models(self):
for language in self._languages:
_load_count_model(
self._most_common_unigram_language_models,
language,
1,
_NgramModelType.MOSTCOMMON,
)
_load_count_model(
self._most_common_bigram_language_models,
language,
2,
_NgramModelType.MOSTCOMMON,
)
_load_count_model(
self._most_common_trigram_language_models,
language,
3,
_NgramModelType.MOSTCOMMON,
)
_load_count_model(
self._most_common_quadrigram_language_models,
language,
4,
_NgramModelType.MOSTCOMMON,
)
_load_count_model(
self._most_common_fivegram_language_models,
language,
5,
_NgramModelType.MOSTCOMMON,
)
def _preload_language_models(self):
for language in self._languages:
_load_probability_model(self._trigram_language_models, language, 3)
if not self._is_low_accuracy_mode_enabled:
_load_probability_model(self._unigram_language_models, language, 1)
_load_probability_model(self._bigram_language_models, language, 2)
_load_probability_model(self._quadrigram_language_models, language, 4)
_load_probability_model(self._fivegram_language_models, language, 5)
def unload_language_models(self):
"""Clear all language models loaded by this LanguageDetector instance.
This helps to free allocated memory previously consumed by the models.
"""
for language in self._languages:
try:
self._trigram_language_models.pop(language)
if not self._is_low_accuracy_mode_enabled:
self._unigram_language_models.pop(language)
self._bigram_language_models.pop(language)
self._quadrigram_language_models.pop(language)
self._fivegram_language_models.pop(language)
if (
self._is_built_from_one_language
or self._is_low_accuracy_mode_enabled
):
self._unique_unigram_language_models.pop(language)
self._unique_bigram_language_models.pop(language)
self._unique_trigram_language_models.pop(language)
self._unique_quadrigram_language_models.pop(language)
self._unique_fivegram_language_models.pop(language)
if self._is_built_from_one_language:
self._most_common_unigram_language_models.pop(language)
self._most_common_bigram_language_models.pop(language)
self._most_common_trigram_language_models.pop(language)
self._most_common_quadrigram_language_models.pop(language)
self._most_common_fivegram_language_models.pop(language)
except KeyError:
pass
def detect_language_of(self, text: str) -> Optional[Language]:
"""Detect the language of text.
Args:
text (str): The text whose language should be identified.
Returns:
The identified language. If the language cannot be
reliably detected, None is returned.
"""
confidence_values = self.compute_language_confidence_values(text)
if len(confidence_values) == 0:
return None
most_likely_language, most_likely_language_probability = confidence_values[0]
if len(confidence_values) == 1:
if most_likely_language_probability == 0.0:
return None
return most_likely_language
second_most_likely_language_probability = confidence_values[1].value
if most_likely_language_probability == second_most_likely_language_probability:
return None
if (
most_likely_language_probability - second_most_likely_language_probability
< self._minimum_relative_distance
):
return None
return most_likely_language
def detect_multiple_languages_of(self, text: str) -> list[DetectionResult]:
"""Attempt to detect multiple languages in mixed-language text.
This feature is experimental and under continuous development.
A list of DetectionResult is returned containing an entry for each
contiguous single-language text section as identified by the library.
Each entry consists of the identified language, a start index and an
end index. The indices denote the substring that has been identified
as a contiguous single-language text section.
Args:
text (str): The text whose language should be identified.
Returns:
A list of detection results. Each result contains the
identified language, the start index and end index of
the identified single-language substring.
"""
if len(text) == 0:
return []
tokens_without_whitespace = TOKENS_WITHOUT_WHITESPACE.findall(text)
if len(tokens_without_whitespace) == 0:
return []
results = []
language_counts: Counter[Language] = Counter()
language = self.detect_language_of(text)
if language is not None:
language_counts[language] += 1
for word in tokens_without_whitespace:
if len(word) < 5:
continue
language = self.detect_language_of(word)
if language is not None:
language_counts[language] += 1
languages = frozenset(language_counts.keys())
if len(languages) == 1:
result = DetectionResult(
start_index=0,
end_index=len(text),
word_count=len(tokens_without_whitespace),
language=next(iter(languages)),
)
results.append(result)
else:
previous_detector_languages = self._languages.copy()
self._languages = languages
current_start_index = 0
current_end_index = 0
word_count = 0
current_language = None
token_matches = list(TOKENS_WITH_OPTIONAL_WHITESPACE.finditer(text))
last_index = len(token_matches) - 1
for i, token_match in enumerate(token_matches):
word = token_match.group(0)
language = self.detect_language_of(word)
if i == 0 or (current_language is None and language is not None):
current_language = language
if (
language != current_language
and language is not None
and current_language is not None
):
result = DetectionResult(
start_index=current_start_index,
end_index=current_end_index,
word_count=word_count,
language=current_language,
)
results.append(result)
current_start_index = current_end_index
current_language = language
word_count = 0
current_end_index = token_match.end()
word_count += 1
if i == last_index and current_language is not None:
result = DetectionResult(
start_index=current_start_index,
end_index=len(text),
word_count=word_count,
language=current_language,
)
results.append(result)
if len(results) > 1:
mergeable_result_indices = []
for i, result in enumerate(results):
if result.word_count == 1:
mergeable_result_indices.append(i)
_merge_adjacent_results(results, mergeable_result_indices)
if len(results) > 1:
mergeable_result_indices.clear()
for i in range(len(results) - 1):
if results[i].language == results[i + 1].language:
mergeable_result_indices.append(i + 1)
_merge_adjacent_results(results, mergeable_result_indices)
self._languages = previous_detector_languages
return results
def compute_language_confidence_values(self, text: str) -> list[ConfidenceValue]:
"""Compute confidence values for each language supported
by this detector for the given text.
The confidence values denote how likely it is that the
given text has been written in any of the languages
supported by this detector.
A list is returned containing those languages which the
calling instance of LanguageDetector has been built from.
The entries are sorted by their confidence value in
descending order. Each value is a probability between
0.0 and 1.0. The probabilities of all languages will sum to 1.0.
If the language is unambiguously identified by the rule engine,
the value 1.0 will always be returned for this language. The
other languages will receive a value of 0.0.
Args:
text (str): The text for which to compute confidence values.
Returns:
A list of 2-element tuples. Each tuple contains a language
and the associated confidence value.
"""
values = [ConfidenceValue(language, 0.0) for language in self._languages]
words = _split_text_into_words(text)
if len(words) == 0:
return values
if self._is_built_from_one_language or self._is_low_accuracy_mode_enabled:
language_detected_by_ngrams = (
self._detect_language_with_unique_and_common_ngrams(words)
)
if language_detected_by_ngrams is not None:
for i in range(len(values)):
if values[i].language == language_detected_by_ngrams:
values[i] = ConfidenceValue(language_detected_by_ngrams, 1.0)
break
_sort_confidence_values(values)
return values
language_detected_by_rules = self._detect_language_with_rules(words)
if language_detected_by_rules is not None:
for i in range(len(values)):
if values[i].language == language_detected_by_rules:
values[i] = ConfidenceValue(language_detected_by_rules, 1.0)
break
_sort_confidence_values(values)
return values
if self._is_built_from_one_language:
return values
filtered_languages = self._filter_languages_by_rules(words)
if len(filtered_languages) == 1:
language_detected_by_filter = next(iter(filtered_languages))
for i in range(len(values)):
if values[i].language == language_detected_by_filter:
values[i] = ConfidenceValue(language_detected_by_filter, 1.0)
break
_sort_confidence_values(values)
return values
character_count = sum(len(word) for word in words)
if self._is_low_accuracy_mode_enabled and character_count < 3:
_sort_confidence_values(values)
return values
ngram_length_range = (
range(3, 4)
if character_count >= _HIGH_ACCURACY_MODE_MAX_TEXT_LENGTH
or self._is_low_accuracy_mode_enabled
else range(1, 6)
)
unigram_counts = None
all_probabilities = []
for ngram_length in ngram_length_range:
if character_count >= ngram_length:
ngram_model = _create_lower_order_ngrams(words, ngram_length)
if ngram_length == 1:
unigram_counts = self._count_unigrams(
ngram_model, filtered_languages
)
probabilities = self._compute_language_probabilities(
ngram_model, filtered_languages
)
all_probabilities.append(probabilities)
summed_up_probabilities = _sum_up_probabilities(
all_probabilities, unigram_counts, filtered_languages
)
if len(summed_up_probabilities) == 0:
_sort_confidence_values(values)
return values
denominator = sum(summed_up_probabilities.values())
for language, probability in summed_up_probabilities.items():
for i in range(len(values)):
if values[i].language == language:
# apply softmax function
normalized_probability = probability / denominator
values[i] = ConfidenceValue(language, float(normalized_probability))
break
_sort_confidence_values(values)
return values
def compute_language_confidence(self, text: str, language: Language) -> float:
"""Compute the confidence value for the given language and input text.
The confidence value denotes how likely it is that the given text
has been written in the given language. The value that this method
computes is a number between 0.0 and 1.0. If the language is
unambiguously identified by the rule engine, the value 1.0 will
always be returned. If the given language is not supported by this
detector instance, the value 0.0 will always be returned.
Args:
text (str): The text for which to compute the confidence value.
language (Language):
The language for which to compute the confidence value.
Returns:
A float value between 0.0 and 1.0.
"""
confidence_values = self.compute_language_confidence_values(text)
for value in confidence_values:
if value.language == language:
return value.value
return 0.0
def _detect_language_with_unique_and_common_ngrams(
self, words: list[str]
) -> Optional[Language]:
for ngram_length in reversed(range(1, 6)):
ngrams = _create_ngrams(words, ngram_length)
optional_language = None
for language in self._languages:
if ngram_length == 1:
if (
language == Language.HINDI
or language == Language.MARATHI
or (
language == Language.JAPANESE
and self._is_built_from_one_language
)
or language in _LANGUAGES_WITH_SINGLE_UNIQUE_SCRIPT
):
optional_language = self._search_unique_and_most_common_ngrams(
language, ngrams, ngram_length
)
elif ngram_length == 2:
optional_language = _search_unique_ngrams(
self._unique_bigram_language_models, language, ngrams
)
else:
optional_language = self._search_unique_and_most_common_ngrams(
language, ngrams, ngram_length
)
if optional_language is not None:
return optional_language
return None
def _search_unique_and_most_common_ngrams(
self, language: Language, ngrams: frozenset[str], ngram_length: int
) -> Optional[Language]:
if ngram_length == 5:
unique_language_models = self._unique_fivegram_language_models
elif ngram_length == 4:
unique_language_models = self._unique_quadrigram_language_models
elif ngram_length == 3:
unique_language_models = self._unique_trigram_language_models
elif ngram_length == 2:
unique_language_models = self._unique_bigram_language_models
elif ngram_length == 1:
unique_language_models = self._unique_unigram_language_models
else:
raise ValueError(f"unsupported ngram length detected: {ngram_length}")
optional_language = _search_unique_ngrams(
unique_language_models, language, ngrams
)
if optional_language is not None:
return optional_language
if ngram_length == 5:
most_common_language_models = self._most_common_fivegram_language_models
elif ngram_length == 4:
most_common_language_models = self._most_common_quadrigram_language_models
elif ngram_length == 3:
most_common_language_models = self._most_common_trigram_language_models
elif ngram_length == 2:
most_common_language_models = self._most_common_bigram_language_models
elif ngram_length == 1:
most_common_language_models = self._most_common_unigram_language_models
else:
raise ValueError(f"unsupported ngram length detected: {ngram_length}")
return _search_most_common_ngrams(
most_common_language_models,
language,
ngrams,
self._is_built_from_one_language,
)
def _detect_language_with_rules(self, words: list[str]) -> Optional[Language]:
total_language_counts: Counter[Optional[Language]] = Counter()
half_word_count = len(words) * 0.5
for word in words:
word_language_counts: Counter[Language] = Counter()
for char in word:
is_match = False
for alphabet, language in self._single_language_alphabets.items():
if alphabet.matches(char):
word_language_counts[language] += 1
is_match = True
break
if not is_match:
if _Alphabet.HAN.matches(char):
word_language_counts[Language.CHINESE] += 1
elif JAPANESE_CHARACTER_SET.fullmatch(char) is not None:
word_language_counts[Language.JAPANESE] += 1
elif (
_Alphabet.LATIN.matches(char)
or _Alphabet.CYRILLIC.matches(char)
or _Alphabet.DEVANAGARI.matches(char)
):
for language in self._languages_with_unique_characters:
if (
language._unique_characters is not None
and char in language._unique_characters
):
word_language_counts[language] += 1
if len(word_language_counts) == 0:
total_language_counts[None] += 1
elif len(word_language_counts) == 1:
language = list(word_language_counts.elements())[0]
if language in self._languages:
total_language_counts[language] += 1
else:
total_language_counts[None] += 1
elif (
Language.CHINESE in word_language_counts
and Language.JAPANESE in word_language_counts
):
total_language_counts[Language.JAPANESE] += 1
else:
most_frequent_word_languages = word_language_counts.most_common(2)
(
most_frequent_word_language,
first_count,
) = most_frequent_word_languages[0]
(_, second_count) = most_frequent_word_languages[1]
if (
first_count > second_count
and most_frequent_word_language in self._languages
):
total_language_counts[most_frequent_word_language] += 1
else:
total_language_counts[None] += 1
if total_language_counts[None] < half_word_count:
del total_language_counts[None]
if len(total_language_counts) == 0:
return None
if len(total_language_counts) == 1:
return list(total_language_counts)[0]
most_frequent_total_languages = total_language_counts.most_common(2)
(most_frequent_language, first_count) = most_frequent_total_languages[0]
(second_frequent_language, second_count) = most_frequent_total_languages[1]
if {most_frequent_language, second_frequent_language} == {
Language.JAPANESE,
Language.CHINESE,
}:
return Language.JAPANESE
if first_count == second_count:
return None
return most_frequent_language
def _filter_languages_by_rules(self, words: list[str]) -> frozenset[Language]:
detected_alphabets: Counter[_Alphabet] = Counter()
half_word_count = len(words) * 0.5
for word in words:
for alphabet in _Alphabet:
if alphabet.matches(word):
detected_alphabets[alphabet] += len(word)
break
if len(detected_alphabets) == 0:
return self._languages
if len(detected_alphabets) > 1:
distinct_alphabets = {count for count in detected_alphabets.values()}
if len(distinct_alphabets) == 1:
return self._languages
most_frequent_alphabet = detected_alphabets.most_common(1)[0][0]
filtered_languages = {
language
for language in self._languages
if most_frequent_alphabet in language._alphabets
}
language_counts: Counter[Language] = Counter()
for characters, languages in CHARS_TO_LANGUAGES_MAPPING.items():
relevant_languages = languages.intersection(filtered_languages)
for word in words:
for character in characters:
if character in word:
for language in relevant_languages:
language_counts[language] += 1
languages_subset = {
language
for language, count in language_counts.items()
if count >= half_word_count
}
if len(languages_subset) > 0:
return frozenset(languages_subset)
return frozenset(filtered_languages)
def _compute_language_probabilities(
self,
ngram_model: list[list[str]],
filtered_languages: frozenset[Language],
) -> dict[Language, float]:
probabilities = {}
for language in filtered_languages:
result = self._compute_sum_of_ngram_probabilities(language, ngram_model)
if result < 0:
probabilities[language] = result
return probabilities
def _compute_sum_of_ngram_probabilities(
self, language: Language, ngram_model: list[list[str]]
) -> float:
result = 0.0
for ngrams in ngram_model:
for ngram in ngrams:
probability = self._look_up_ngram_probability(language, ngram)
if probability is not None:
result += probability
break
return result
def _look_up_ngram_probability(
self, language: Language, ngram: str
) -> Optional[float]:
ngram_length = len(ngram)
if ngram_length == 5:
language_models = self._fivegram_language_models
elif ngram_length == 4:
language_models = self._quadrigram_language_models
elif ngram_length == 3:
language_models = self._trigram_language_models
elif ngram_length == 2:
language_models = self._bigram_language_models
elif ngram_length == 1:
language_models = self._unigram_language_models
elif ngram_length == 0:
raise ValueError("zerogram detected")
else:
raise ValueError(f"unsupported ngram length detected: {ngram_length}")
if not _load_probability_model(language_models, language, ngram_length):
return None
return language_models[language].get(ngram, None)
def _count_unigrams(
self,
unigram_model: list[list[str]],
filtered_languages: frozenset[Language],
) -> Counter[Language]:
unigram_counts: Counter[Language] = Counter()
for language in filtered_languages:
for unigrams in unigram_model:
if self._look_up_ngram_probability(language, unigrams[0]) is not None:
unigram_counts[language] += 1
return unigram_counts