Image Classification on Cifar10
Model
Model Size(M)
Flops(M)
Top-1 ACC
Inference Time(μs)
Inference Device
Download
CARS-A
7.72
469
95.923477
51.28
V100
tar
CARS-B
8.45
548
96.584535
69.00
V100
tar
CARS-C
9.32
620
96.744791
71.62
V100
tar
CARS-D
10.5
729
97.055288
82.72
V100
tar
CARS-E
11.3
786
97.245592
88.98
V100
tar
CARS-F
16.7
1234
97.295673
244.07
V100
tar
CARS-G
19.1
1439
97.375801
391.20
V100
tar
CARS-H
19.7
1456
97.425881
398.88
V100
tar
Image Classification on ImageNet
Model
Model Size(M)
Flops(G)
Top-1 ACC
Inference Time(s)
Download
EfficientNet:B0
20.3
0.40
76.82
0.0088s/iters
tar
EfficientNet:B4
74.3
4.51
82.87
0.015s/iters
tar
EfficientNet:B8:672
88
63
85.7
0.98s/iters
tar
EfficientNet:B8:800
88
97
85.8
1.49s/iters
tar
Detection on COCO-minival
Model
Model Size(M)
Flops(G)
mAP
Inference Time(ms)
Inference Device
Download
SM-NAS:E0
16.23
22.01
27.11
24.56
V100
tar
SM-NAS:E1
37.83
64.72
34.20
32.07
V100
tar
SM-NAS:E2
33.02
77.04
40.04
39.50
V100
tar
SM-NAS:E3
52.05
116.22
42.68
50.71
V100
tar
SM-NAS:E4
92
115.51
43.89
80.22
V100
tar
SM-NAS:E5
90.47
249.14
46.05
108.07
V100
tar
Model
Flops(G)
F1 Score
Inference Time(ms)
Inference Device
Download
AutoLane: CULane-s
66.5
71.5
-
V100
tar
AutoLane: CULane-m
66.9
74.6
-
V100
tar
AutoLane: CULane-l
273
75.2
-
V100
tar
Super-Resolution on Urban100, B100, Set14, Set5
Model
Model Size(M)
Flops(G)
Urban100
B100
Set14
Set5
Inference Time(ms)
Download
PSNR
SSIM
PSNR
SSIM
PSNR
SSIM
PSNR
SSIM
ESR-EA:ESRN-V-1
1.32
40.616
31.65
0.8814
32.09
0.8802
33.37
0.8887
37.79
0.9566
29.38
tar
ESR-EA:ESRN-V-2
1.31
40.21
31.69
0.8829
32.08
0.8810
33.37
0.8911
37.84
0.9569
31.25
tar
ESR-EA:ESRN-V-3
1.31
41.676
31.47
0.8803
32.05
0.8789
33.35
0.8878
37.79
0.9570
21.78
tar
ESR-EA:ESRN-V-4
1.35
40.17
31.58
0.8814
32.06
0.8810
33.35
0.0.8902
37.83
0.9567
30.98
tar
SR_EA:M2Mx2-A
3.20
196.27
32.20
0.8948
32.20
0.8842
33.65
0.8943
38.06
0.9588
11.41
tar
SR_EA:M2Mx2-B
0.61
35.03
31.77
0.8796
32.00
0.8989
33.32
0.8870
37.73
0.9562
8.55
tar
SR_EA:M2Mx2-C
0.24
13.49
30.92
0.8717
31.89
0.8783
33.13
0.8829
37.56
0.9556
5.59
tar
Model
Model Size(M)
Flops(G)
Params(K)
mIOU
Download
Adelaide
10.6
0.5784
3822.14
0.7602
tar
Model
Accuracy
FLOPS (G)
Params (M)
Inference Time (ms)
Download
D-224p
D-512p
D-720p
Pytorch-V100
Caffe-V100
Caffe-CPU
D-Net-21
61.51
0.21
2.59
2.02
2.84
6.11
3.02
2.26
22.30
tar
D-Net-24
62.06
0.24
2.62
1.98
2.77
6.60
2.89
2.51
23.50
tar
D-Net-30
64.49
0.30
3.16
1.95
2.81
7.22
2.86
2.71
27.30
tar
D-Net-39
67.71
0.39
4.37
2.06
3.01
7.12
3.10
2.70
23.80
tar
D-Net-40
66.92
0.40
3.94
1.98
2.96
6.42
2.97
2.48
17.60
tar
D-Net-59
71.29
0.59
7.13
2.30
3.31
8.10
3.28
2.71
33.10
tar
D-Net-94
70.23
0.94
5.80
2.19
3.54
8.75
2.93
2.84
39.10
tar
D-Net-124
76.09
1.24
11.80
2.87
5.09
15.42
4.36
3.65
56.30
tar
D-Net-147
71.91
1.47
10.47
2.50
5.28
23.84
2.29
2.24
45.20
tar
D-Net-156
74.46
1.56
15.24
2.52
4.13
11.89
3.02
2.86
32.40
tar
D-Net-159
75.21
1.59
19.13
3.05
4.71
12.76
4.55
3.78
43.30
tar
D-Net-166
72.93
1.66
10.82
2.27
4.26
11.42
2.97
2.68
50.60
tar
D-Net-167
74.18
1.67
10.56
2.51
4.21
12.03
2.92
2.84
43.60
tar
D-Net-172
76.41
1.72
17.44
4.02
10.72
36.41
3.51
34.33
106.20
tar
D-Net-177
75.55
1.77
19.48
3.65
5.40
14.09
5.66
4.64
58.80
tar
D-Net-234
78.80
2.34
28.45
5.03
8.01
21.35
8.69
7.44
87.10
tar
D-Net-263
76.87
2.63
21.42
3.42
6.04
19.13
4.44
4.08
90.40
tar
D-Net-264
76.52
2.64
20.17
3.12
5.54
16.88
4.27
4.01
62.50
tar
D-Net-275
78.28
2.75
30.76
4.09
10.56
34.76
4.22
4.03
96.60
tar
D-Net-367
79.37
3.67
41.83
5.56
15.09
66.57
6.86
6.05
130.90
tar
D-Net-394
77.91
3.94
25.15
3.35
7.79
24.97
4.38
4.12
75.80
tar
D-Net-504
78.96
5.04
28.47
3.57
9.07
30.32
4.59
4.90
93.50
tar
D-Net-538
80.92
5.38
44.00
5.90
13.89
46.83
9.73
8.52
156.80
tar
D-Net-572
80.41
5.72
49.29
6.24
18.56
87.48
5.17
5.54
182.20
tar
D-Net-626
79.21
6.26
29.39
4.27
11.46
38.53
6.60
6.51
171.80
tar
D-Net-662
80.83
6.62
70.45
7.84
23.57
116.79
6.67
6.51
163.70
tar
D-Net-676
79.76
6.76
36.17
4.60
12.32
46.65
6.55
6.47
182.20
tar
D-Net-695
79.53
6.95
29.38
5.25
12.33
40.84
8.75
8.31
160.70
tar
D-Net-834
80.23
8.34
46.10
5.53
13.19
42.65
8.11
8.68
262.50
tar
D-Net-876
81.67
8.76
47.83
14.87
41.51
150.69
19.05
16.23
317.90
tar
D-Net-1092
80.39
10.92
42.21
5.18
17.18
80.49
7.11
7.68
232.50
tar
D-Net-1156
80.61
11.56
43.03
5.34
17.92
83.32
7.31
8.02
260.50
tar
D-Net-1195
80.63
11.95
45.49
5.55
18.40
85.05
7.95
8.63
259.10
tar
D-Net-1319
81.38
13.19
72.44
8.08
19.88
63.23
14.14
14.15
300.40
tar
D-Net-1414
81.22
14.14
79.39
8.05
21.49
76.60
12.34
12.17
251.90
tar
D-Net-1549
81.11
15.49
51.96
6.37
22.53
112.33
8.35
9.51
295.50
tar
D-Net-1772
81.52
17.72
77.81
7.67
28.05
128.57
11.10
12.29
357.60
tar
D-Net-1822
82.08
18.22
103.00
11.80
50.53
298.63
9.51
12.11
434.10
tar
D-Net-2354
82.65
23.54
130.45
20.94
77.97
397.44
19.08
21.13
670.70
tar
D-Net-2524
82.04
25.24
76.66
11.20
35.08
129.15
18.71
19.39
504.90
tar
D-Net-2763
82.42
27.63
87.34
12.19
38.15
140.61
19.96
21.15
599.60
tar
D-Net-2883
82.38
28.83
93.44
12.25
39.51
146.81
20.05
21.54
554.10
tar
The compressed package of each model contains the model and inference sample code. If you have any questions, submit the issue in a timely manner. We will reply to you in a timely manner.