-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_ppo_gym.py
221 lines (190 loc) · 7.7 KB
/
train_ppo_gym.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from __future__ import absolute_import
from builtins import * # NOQA
from future import standard_library
standard_library.install_aliases()
import argparse
import logging
import os
import chainer
from chainer import functions as F
import gym
gym.undo_logger_setup()
import gym.wrappers
import numpy as np
import chainerrl
from train_trpo_gym import ClippedGaussianPolicy
from call_render import CallRender
from clip_action import ClipAction
class ObsNormalizedModel(chainerrl.agents.a3c.A3CSeparateModel):
"""An example of A3C feedforward Gaussian policy."""
def __init__(self, policy, vf, obs_size):
super().__init__(policy, vf)
with self.init_scope():
self.obs_filter = chainerrl.links.EmpiricalNormalization(
shape=obs_size
)
def __call__(self, obs):
obs = F.clip(self.obs_filter(obs, update=False),
-5.0, 5.0)
return super().__call__(obs)
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', type=int, default=-1,
help='GPU device ID. Set to -1 to use CPUs only.')
parser.add_argument('--env', type=str, default='Hopper-v1',
help='Gym Env ID')
parser.add_argument('--seed', type=int, default=0,
help='Random seed [0, 2 ** 32)')
parser.add_argument('--outdir', type=str, default='results',
help='Directory path to save output files.'
' If it does not exist, it will be created.')
parser.add_argument('--steps', type=int, default=10 ** 6,
help='Total time steps for training.')
parser.add_argument('--eval-interval', type=int, default=100000,
help='Interval between evaluation phases in steps.')
parser.add_argument('--eval-n-runs', type=int, default=100,
help='Number of episodes ran in an evaluation phase')
parser.add_argument('--render', action='store_true', default=False,
help='Render the env')
parser.add_argument('--demo', action='store_true', default=False,
help='Run demo episodes, not training')
parser.add_argument('--load', type=str, default='',
help='Directory path to load a saved agent data from'
' if it is a non-empty string.')
parser.add_argument('--ppo-update-interval', type=int, default=2048,
help='Interval steps of PPO iterations.')
parser.add_argument('--logger-level', type=int, default=logging.INFO,
help='Level of the root logger.')
parser.add_argument('--use-clipped-gaussian', action='store_true',
help='Use ClippedGaussian instead of Gaussian')
parser.add_argument('--n-hidden-channels', type=int, default=64,
help='Number of hidden channels.')
parser.add_argument('--adam-lr', type=float, default=3e-4)
parser.add_argument('--label', type=str, default='')
args = parser.parse_args()
logging.basicConfig(level=args.logger_level)
# Set random seed
chainerrl.misc.set_random_seed(args.seed, gpus=(args.gpu,))
args.outdir = chainerrl.experiments.prepare_output_dir(args, args.outdir)
def make_env(test):
env = gym.make(args.env)
env_seed = 2 ** 32 - 1 - args.seed if test else args.seed
assert 0 <= env_seed < 2 ** 32
env.seed(env_seed)
mode = 'evaluation' if test else 'training'
env = gym.wrappers.Monitor(
env,
args.outdir,
mode=mode,
video_callable=False,
uid=mode,
)
if args.render:
env = CallRender(env)
env = ClipAction(env)
return env
env = make_env(test=False)
timestep_limit = env.spec.tags.get(
'wrapper_config.TimeLimit.max_episode_steps')
obs_space = env.observation_space
action_space = env.action_space
print('Observation space:', obs_space)
print('Action space:', action_space)
if not isinstance(obs_space, gym.spaces.Box):
print("""\
This example only supports gym.spaces.Box observation spaces. To apply it to
other observation spaces, use a custom phi function that convert an observation
to numpy.ndarray of numpy.float32.""") # NOQA
return
# Parameterize log std
def var_func(x): return F.exp(x) ** 2
assert isinstance(action_space, gym.spaces.Box)
# Use a Gaussian policy for continuous action spaces
if args.use_clipped_gaussian:
policy = \
ClippedGaussianPolicy(
obs_space.low.size,
action_space.low.size,
n_hidden_channels=args.n_hidden_channels,
n_hidden_layers=2,
mean_wscale=0.01,
nonlinearity=F.tanh,
var_type='diagonal',
var_func=var_func,
var_param_init=0, # log std = 0 => std = 1
min_action=action_space.low.astype(np.float32),
max_action=action_space.high.astype(np.float32),
)
else:
policy = \
chainerrl.policies.FCGaussianPolicyWithStateIndependentCovariance(
obs_space.low.size,
action_space.low.size,
n_hidden_channels=args.n_hidden_channels,
n_hidden_layers=2,
mean_wscale=0.01,
nonlinearity=F.tanh,
var_type='diagonal',
var_func=var_func,
var_param_init=0, # log std = 0 => std = 1
)
# Use a value function to reduce variance
vf = chainerrl.v_functions.FCVFunction(
obs_space.low.size,
n_hidden_channels=args.n_hidden_channels,
n_hidden_layers=2,
last_wscale=0.01,
nonlinearity=F.tanh,
)
model = ObsNormalizedModel(policy, vf, obs_space.low.size)
if args.gpu >= 0:
chainer.cuda.get_device_from_id(args.gpu).use()
model.to_gpu(args.gpu)
opt = chainer.optimizers.Adam(args.adam_lr)
opt.setup(model)
# Draw the computational graph and save it in the output directory.
fake_obs = chainer.Variable(
policy.xp.zeros_like(obs_space.low, dtype=np.float32)[None],
name='observation')
chainerrl.misc.draw_computational_graph(
[model(fake_obs)], os.path.join(args.outdir, 'model'))
# Hyperparameters in http://arxiv.org/abs/1709.06560
agent = chainerrl.agents.PPO(
model=model,
optimizer=opt,
phi=lambda x: x.astype(np.float32, copy=False),
update_interval=args.ppo_update_interval,
gamma=0.995,
lambd=0.97,
standardize_advantages=True,
entropy_coef=0,
)
if args.load:
agent.load(args.load)
if args.demo:
env = make_env(test=True)
eval_stats = chainerrl.experiments.eval_performance(
env=env,
agent=agent,
n_runs=args.eval_n_runs,
max_episode_len=timestep_limit)
print('n_runs: {} mean: {} median: {} stdev {}'.format(
args.eval_n_runs, eval_stats['mean'], eval_stats['median'],
eval_stats['stdev']))
else:
chainerrl.experiments.train_agent_with_evaluation(
agent=agent,
env=env,
eval_env=make_env(test=True),
outdir=args.outdir,
steps=args.steps,
eval_n_runs=args.eval_n_runs,
eval_interval=args.eval_interval,
max_episode_len=timestep_limit,
save_best_so_far_agent=False,
)
if __name__ == '__main__':
main()