-
Notifications
You must be signed in to change notification settings - Fork 37
/
nets.py
executable file
·369 lines (320 loc) · 13.4 KB
/
nets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
#!/usr/bin/env python
"""Sample script of recurrent neural network language model.
This code is ported from the following implementation written in Torch.
https://github.com/tomsercu/lstm
"""
from __future__ import division
from __future__ import print_function
import argparse
import json
import warnings
import numpy as np
import chainer
from chainer import cuda
import chainer.functions as F
import chainer.links as L
from chainer import training
from chainer.training import extensions
from chainer import reporter
embed_init = chainer.initializers.Uniform(.25)
def embed_seq_batch(embed, seq_batch, dropout=0., context=None):
x_len = [len(seq) for seq in seq_batch]
x_section = np.cumsum(x_len[:-1])
ex = embed(F.concat(seq_batch, axis=0))
ex = F.dropout(ex, dropout)
if context is not None:
ids = [embed.xp.full((l, ), i).astype('i')
for i, l in enumerate(x_len)]
ids = embed.xp.concatenate(ids, axis=0)
cx = F.embed_id(ids, context)
ex = F.concat([ex, cx], axis=1)
exs = F.split_axis(ex, x_section, 0)
return exs
class NormalOutputLayer(L.Linear):
def __init__(self, *args, **kwargs):
super(NormalOutputLayer, self).__init__(*args, **kwargs)
def output_and_loss(self, h, t, reduce='mean'):
logit = self(h)
return F.softmax_cross_entropy(
logit, t, normalize=False, reduce=reduce)
def output(self, h, t=None):
return self(h)
class MLP(chainer.Chain):
def __init__(self, n_hidden, in_units, hidden_units, out_units, dropout=0.):
super(MLP, self).__init__()
with self.init_scope():
self.l1 = L.Linear(in_units, hidden_units)
self.lo = L.Linear(hidden_units, out_units)
for i in range(2, n_hidden + 2):
setattr(self, 'l{}'.format(i),
L.Linear(hidden_units, hidden_units))
self.n_hidden = n_hidden
self.dropout = dropout
def __call__(self, x, label=None):
x = self.l1(x)
for i in range(2, self.n_hidden + 2):
x = F.relu(x)
x = F.dropout(x, self.dropout)
x = getattr(self, 'l{}'.format(i))(x)
x = F.relu(x)
x = F.dropout(x, self.dropout)
x = self.lo(x)
x = F.relu(x)
if hasattr(self, 'l1_label') and label is not None:
x += self.l1_label(label)
return x
class BiLanguageModel(chainer.Chain):
def __init__(self, n_vocab, n_units, n_layers=2, dropout=0.5):
super(BiLanguageModel, self).__init__()
with self.init_scope():
self.embed = L.EmbedID(n_vocab, n_units)
RNN = L.NStepLSTM
self.encoder_fw = RNN(n_layers, n_units, n_units, dropout)
self.encoder_bw = RNN(n_layers, n_units, n_units, dropout)
self.output = NormalOutputLayer(n_units, n_vocab)
self.mlp = MLP(1, n_units * 2, n_units, n_units, dropout)
self.dropout = dropout
self.n_units = n_units
self.n_layers = n_layers
def add_label_condition_nets(self, n_labels, label_units):
with self.init_scope():
self.mlp.add_link(
'l1_label',
L.Linear(None, self.mlp.l1.b.size, nobias=True,
initialW=chainer.initializers.Uniform(0.4)))
self.n_labels = n_labels
def encode(self, seq_batch, labels=None):
seq_batch_wo_2bos = [seq[2::] for seq in seq_batch]
revseq_batch_wo_2bos = [seq[::-1] for seq in seq_batch_wo_2bos]
seq_batch_wo_2eos = [seq[:-2] for seq in seq_batch]
bwe_seq_batch = self.embed_seq_batch(revseq_batch_wo_2bos)
fwe_seq_batch = self.embed_seq_batch(seq_batch_wo_2eos)
bwt_out_batch = self.encode_seq_batch(
bwe_seq_batch, self.encoder_bw)[-1]
fwt_out_batch = self.encode_seq_batch(
fwe_seq_batch, self.encoder_fw)[-1]
revbwt_concat = F.concat(
[b[::-1] for b in bwt_out_batch], axis=0)
fwt_concat = F.concat(fwt_out_batch, axis=0)
t_out_concat = F.concat([fwt_concat, revbwt_concat], axis=1)
t_out_concat = F.dropout(t_out_concat, self.dropout)
if hasattr(self.mlp, 'l1_label') and labels is not None:
labels = [[labels[i]] * f.shape[0]
for i, f in enumerate(fwt_out_batch)]
labels = self.xp.concatenate(sum(labels, []), axis=0)
label_concat = self.xp.zeros(
(t_out_concat.shape[0], self.n_labels)).astype('f')
label_concat[self.xp.arange(len(labels)), labels] = 1.
t_out_concat = self.mlp(t_out_concat, label_concat)
else:
t_out_concat = self.mlp(t_out_concat)
return t_out_concat
def embed_seq_batch(self, x_seq_batch, context=None):
e_seq_batch = embed_seq_batch(
self.embed, x_seq_batch,
dropout=self.dropout,
context=context)
return e_seq_batch
def encode_seq_batch(self, e_seq_batch, encoder):
hs, cs, y_seq_batch = encoder(None, None, e_seq_batch)
return hs, cs, y_seq_batch
def calculate_loss(self, input_chain, **args):
seq_batch = sum(input_chain, [])
t_out_concat = self.encode(seq_batch)
seq_batch_mid = [seq[1:-1] for seq in seq_batch]
seq_mid_concat = F.concat(seq_batch_mid, axis=0)
n_tok = sum(len(s) for s in seq_batch_mid)
loss = self.output_and_loss_from_concat(
t_out_concat, seq_mid_concat,
normalize=n_tok)
reporter.report({'perp': self.xp.exp(loss.data)}, self)
return loss
def output_and_loss_from_concat(self, y, t, normalize=None):
y = F.dropout(y, ratio=self.dropout)
loss = self.output.output_and_loss(y, t)
if normalize is not None:
loss *= 1. * t.shape[0] / normalize
else:
loss *= t.shape[0]
return loss
def calculate_loss_with_labels(self, seq_batch_with_labels):
seq_batch, labels = seq_batch_with_labels
t_out_concat = self.encode(seq_batch, labels=labels)
seq_batch_mid = [seq[1:-1] for seq in seq_batch]
seq_mid_concat = F.concat(seq_batch_mid, axis=0)
n_tok = sum(len(s) for s in seq_batch_mid)
loss = self.output_and_loss_from_concat(
t_out_concat, seq_mid_concat,
normalize=n_tok)
reporter.report({'perp': self.xp.exp(loss.data)}, self)
return loss
def predict(self, xs, labels=None):
with chainer.using_config('train', False), chainer.no_backprop_mode():
t_out_concat = self.encode(xs, labels=labels, add_original=0.)
prob_concat = F.softmax(self.output.output(t_out_concat)).data
x_len = [len(x) for x in xs]
x_section = np.cumsum(x_len[:-1])
ps = np.split(cuda.to_cpu(prob_concat), x_section, 0)
return ps
def predict_embed(self,
xs, embedW,
labels=None,
dropout=0.,
mode='sampling',
temp=1.,
word_lower_bound=0.,
gold_lower_bound=0.,
gumbel=True,
residual=0.,
wordwise=True,
add_original=0.,
augment_ratio=0.25):
x_len = [len(x) for x in xs]
with chainer.using_config('train', False), chainer.no_backprop_mode():
t_out_concat = self.encode(xs, labels=labels)
prob_concat = self.output.output(t_out_concat).data
prob_concat /= temp
prob_concat += self.xp.random.gumbel(
size=prob_concat.shape).astype('f')
prob_concat = F.softmax(prob_concat).data
out_concat = F.embed_id(
self.xp.argmax(prob_concat, axis=1).astype(np.int32), embedW)
# insert eos
eos = embedW[0][None]
new_out = []
count = 0
for i, x in enumerate(xs):
new_out.append(eos)
new_out.append(out_concat[count:count + len(x) - 2])
new_out.append(eos)
count += len(x) - 2
out_concat = F.concat(new_out, axis=0)
def embed_func(x): return F.embed_id(x, embedW, ignore_label=-1)
raw_concat = F.concat(
sequence_embed(embed_func, xs, self.dropout), axis=0)
b, u = raw_concat.shape
mask = self.xp.broadcast_to(
(self.xp.random.rand(b, 1) < augment_ratio),
raw_concat.shape)
out_concat = F.where(mask, out_concat, raw_concat)
x_len = [len(x) for x in xs]
x_section = np.cumsum(x_len[:-1])
out_concat = F.dropout(out_concat, dropout)
exs = F.split_axis(out_concat, x_section, 0)
return exs
def sequence_embed(embed, xs, dropout=0.):
"""Efficient embedding function for variable-length sequences
This output is equally to
"return [F.dropout(embed(x), ratio=dropout) for x in xs]".
However, calling the functions is one-shot and faster.
Args:
embed (callable): A :func:`~chainer.functions.embed_id` function
or :class:`~chainer.links.EmbedID` link.
xs (list of :class:`~chainer.Variable` or :class:`numpy.ndarray` or \
:class:`cupy.ndarray`): i-th element in the list is an input variable,
which is a :math:`(L_i, )`-shaped int array.
dropout (float): Dropout ratio.
Returns:
list of ~chainer.Variable: Output variables. i-th element in the
list is an output variable, which is a :math:`(L_i, N)`-shaped
float array. :math:`(N)` is the number of dimensions of word embedding.
"""
x_len = [len(x) for x in xs]
x_section = np.cumsum(x_len[:-1])
ex = embed(F.concat(xs, axis=0))
ex = F.dropout(ex, ratio=dropout)
exs = F.split_axis(ex, x_section, 0)
return exs
def block_embed(embed, x, dropout=0.):
"""Embedding function followed by convolution
Args:
embed (callable): A :func:`~chainer.functions.embed_id` function
or :class:`~chainer.links.EmbedID` link.
x (:class:`~chainer.Variable` or :class:`numpy.ndarray` or \
:class:`cupy.ndarray`): Input variable, which
is a :math:`(B, L)`-shaped int array. Its first dimension
:math:`(B)` is assumed to be the *minibatch dimension*.
The second dimension :math:`(L)` is the length of padded
sentences.
dropout (float): Dropout ratio.
Returns:
~chainer.Variable: Output variable. A float array with shape
of :math:`(B, N, L, 1)`. :math:`(N)` is the number of dimensions
of word embedding.
"""
e = embed(x)
e = F.dropout(e, ratio=dropout)
e = F.transpose(e, (0, 2, 1))
e = e[:, :, :, None]
return e
class PredictiveEmbed(chainer.Chain):
def __init__(self, n_vocab, n_units, bilm,
dropout=0., initialW=embed_init):
super(PredictiveEmbed, self).__init__()
with self.init_scope():
self.embed = L.EmbedID(n_vocab, n_units, ignore_label=-1,
initialW=initialW)
self.bilm = bilm
self.n_vocab = n_vocab
self.n_units = n_units
self.dropout = dropout
def __call__(self, x):
return self.embed(x)
def setup(self,
mode='weighted_sum',
temp=1.,
word_lower_bound=0.,
gold_lower_bound=0.,
gumbel=True,
residual=0.,
wordwise=True,
add_original=1.,
augment_ratio=0.5,
ignore_unk=-1):
self.config = {
'dropout': self.dropout,
'mode': mode,
'temp': temp,
'word_lower_bound': 0.,
'gold_lower_bound': 0.,
'gumbel': gumbel,
'residual': residual,
'wordwise': wordwise,
'add_original': add_original,
'augment_ratio': augment_ratio
}
if ignore_unk >= 0:
self.bilm.output.b.data[ignore_unk] = -1e5
def embed_xs(self, xs, batch='concat'):
if batch == 'concat':
x_block = chainer.dataset.convert.concat_examples(xs, padding=-1)
ex_block = block_embed(self.embed, x_block, self.dropout)
return ex_block
elif batch == 'list':
exs = sequence_embed(self.embed, xs, self.dropout)
return exs
else:
raise NotImplementedError
def embed_xs_with_prediction(self, xs, labels=None, batch='concat'):
predicted_exs = self.bilm.predict_embed(
xs, self.embed.W,
labels=labels,
dropout=self.config['dropout'],
mode=self.config['mode'],
temp=self.config['temp'],
word_lower_bound=self.config['word_lower_bound'],
gold_lower_bound=self.config['gold_lower_bound'],
gumbel=self.config['gumbel'],
residual=self.config['residual'],
wordwise=self.config['wordwise'],
add_original=self.config['add_original'],
augment_ratio=self.config['augment_ratio'])
if batch == 'concat':
predicted_ex_block = F.pad_sequence(predicted_exs, padding=0.)
predicted_ex_block = F.transpose(
predicted_ex_block, (0, 2, 1))[:, :, :, None]
return predicted_ex_block
elif batch == 'list':
return predicted_exs
else:
raise NotImplementedError