forked from mlcommons/inference
-
Notifications
You must be signed in to change notification settings - Fork 2
/
coco.py
146 lines (134 loc) · 5.75 KB
/
coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import argparse
import json
import logging
from multiprocessing import Pool
import pandas as pd
import os
import tqdm
import urllib.request
import zipfile
logging.basicConfig(level=logging.INFO)
log = logging.getLogger("coco")
def get_args():
"""Parse commandline."""
parser = argparse.ArgumentParser()
parser.add_argument(
"--dataset-dir", default="./coco-2014", help="Dataset download location"
)
parser.add_argument(
"--tsv-path", default=None, help="Precomputed tsv file location"
)
parser.add_argument(
"--max-images",
default=5000,
type=int,
help="Maximun number of images to download",
)
parser.add_argument("--num-workers", default=1, type=int, help="Number of processes to download images")
parser.add_argument(
"--allow-duplicate-images",
action="store_true",
help="Allow mulple captions per image"
)
parser.add_argument(
"--latents-path-torch", default="latents.pt", type=str, help="Path to pytorch latents"
)
parser.add_argument(
"--latents-path-numpy", default="latents.npy", type=str, help="Path to numpy latents"
)
parser.add_argument(
"--seed", type=int, default=2023, help="Seed to choose the dataset"
)
parser.add_argument(
"--keep-raw", action="store_true", help="Keep raw folder"
)
args = parser.parse_args()
return args
def download_img(args):
img_url, target_folder, file_name = args
if os.path.exists(target_folder + file_name):
log.warning(f"Image {file_name} found locally, skipping download")
else:
urllib.request.urlretrieve(img_url, target_folder + file_name)
if __name__ == "__main__":
args = get_args()
dataset_dir = os.path.abspath(args.dataset_dir)
# Check if the annotation dataframe is there
if os.path.exists(f"{dataset_dir}/captions/captions.tsv"):
df_annotations = pd.read_csv(f"{dataset_dir}/captions/captions.tsv", sep="\t")
elif os.path.exists(f"{dataset_dir}/../captions.tsv"):
os.makedirs(f"{dataset_dir}/captions/", exist_ok=True)
os.system(f"cp {dataset_dir}/../captions.tsv {dataset_dir}/captions/")
df_annotations = pd.read_csv(f"{dataset_dir}/captions/captions.tsv", sep="\t")
elif args.tsv_path is not None and os.path.exists(f"{args.tsv_path}"):
os.makedirs(f"{dataset_dir}/captions/", exist_ok=True)
os.system(f"cp {args.tsv_path} {dataset_dir}/captions/")
df_annotations = pd.read_csv(f"{dataset_dir}/captions/captions.tsv", sep="\t")
else:
# Check if raw annotations file already exist
if not os.path.exists(f"{dataset_dir}/raw/annotations/captions_val2014.json"):
# Download annotations
os.makedirs(f"{dataset_dir}/raw/", exist_ok=True)
os.makedirs(f"{dataset_dir}/download_aux/", exist_ok=True)
os.system(
f"cd {dataset_dir}/download_aux/ && \
wget http://images.cocodataset.org/annotations/annotations_trainval2014.zip --show-progress"
)
# Unzip file
with zipfile.ZipFile(
f"{dataset_dir}/download_aux/annotations_trainval2014.zip", "r"
) as zip_ref:
zip_ref.extractall(f"{dataset_dir}/raw/")
# Move captions to target folder
os.makedirs(f"{dataset_dir}/captions/", exist_ok=True)
os.system(
f"mv {dataset_dir}/raw/annotations/captions_val2014.json {dataset_dir}/captions/"
)
if not args.keep_raw:
os.system(f"rm -rf {dataset_dir}/raw")
os.system(f"rm -rf {dataset_dir}/download_aux")
# Convert to dataframe format and extract the relevant fields
with open(f"{dataset_dir}/captions/captions_val2014.json") as f:
captions = json.load(f)
annotations = captions["annotations"]
images = captions["images"]
df_annotations = pd.DataFrame(annotations)
df_images = pd.DataFrame(images)
if not args.allow_duplicate_images:
df_annotations = df_annotations.drop_duplicates(
subset=["image_id"], keep="first"
)
# Sort, shuffle and choose the final dataset
df_annotations = df_annotations.sort_values(by=["id"])
df_annotations = df_annotations.sample(
frac=1, random_state=args.seed
).reset_index(drop=True)
df_annotations = df_annotations.iloc[: args.max_images]
df_annotations['caption'] = df_annotations['caption'].apply(lambda x: x.replace('\n', '').strip())
df_annotations = (
df_annotations.merge(
df_images, how="inner", left_on="image_id", right_on="id"
)
.drop(["id_y"], axis=1)
.rename(columns={"id_x": "id"})
.sort_values(by=["id"])
.reset_index(drop=True)
)
# Download images
os.makedirs(f"{dataset_dir}/validation/data/", exist_ok=True)
tasks = [
(row["coco_url"], f"{dataset_dir}/validation/data/", row["file_name"])
for i, row in df_annotations.iterrows()
]
pool = Pool(processes=args.num_workers)
[_ for _ in tqdm.tqdm(pool.imap_unordered(download_img, tasks), total=len(tasks))]
# Finalize annotations
df_annotations[
["id", "image_id", "caption", "height", "width", "file_name"]
].to_csv(f"{dataset_dir}/captions/captions.tsv", sep="\t", index=False)
if os.path.exists(args.latents_path_torch):
os.makedirs(f"{dataset_dir}/latents/", exist_ok=True)
os.system(f"cp {args.latents_path_torch} {dataset_dir}/latents/")
if os.path.exists(args.latents_path_numpy):
os.makedirs(f"{dataset_dir}/latents/", exist_ok=True)
os.system(f"cp {args.latents_path_numpy} {dataset_dir}/latents/")