Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Kernel Porting #13

Open
aurora-cossairt opened this issue Jul 3, 2019 · 3 comments
Open

Kernel Porting #13

aurora-cossairt opened this issue Jul 3, 2019 · 3 comments

Comments

@aurora-cossairt
Copy link
Collaborator

7/2/2019

FYI copies of FlowAnalysis.py and run_analysis.py should (hopefully) be available here: https://github.com/pgrete/energy-transfer-analysis/tree/aurora

  • Copied a-1.00 to my scratch directory

  • Ran srun -n 8 --mem-per-cpu=10G python ~/src/energy-transfer-analysis/run_analysis.py --res 256 --data_path /mnt/scratch/f0008575/a-1.00/id0/Turb.0010.vtk --data_type Athena --type flow --eos isothermal -forced --outfile /mnt/scratch/f0008575/a-1.00/method_b_0010.hdf5

  • Output:

"
Just wrote statistics for AbsRotU
Traceback (most recent call last):
File "/mnt/home/f0008575/src/energy-transfer-analysis/run_analysis.py", line 221, in
FA.run_analysis()
File "/mnt/home/f0008575/src/energy-transfer-analysis/FlowAnalysis.py", line 249, in run_analysis
self.FT_momentum = self.FFT.forward(momentum, self.FT_momentum)
File "/mnt/home/f0008575/yt-conda/lib/python3.7/site-packages/mpi4py_fft/mpifft.py", line 63, in call
self.input_array[...] = input_array
ValueError: could not broadcast input array from shape (3,32,256,256) into shape (32,256,256)
"

@aurora-cossairt
Copy link
Collaborator Author

Additional errors found

Full output is saved in this repo as outfile.txt

When I run the programs, here are the print statements I ask for:

    delta_x = 1/self.res
    m = np.linspace(1, self.res/2, 1)
    k_lm = lm = np.zeros(int(self.res/2)-1)
    lm[:] = np.array(2*m[:]*delta_x)
    k_lm[:] = 1/lm[:]
    print("Before m shape")
    print("m shape: ", m.shape, "\nlm shape: ", lm.shape, "\nk_lm shape: ", k_lm.shape, file=sys.stderr)

    print("Between m shape and momentum")
    epsilon = all_filtered_momenta = all_filtered_rho = np.zeros(len(k_lm))
    momentum = self.rho * self.U
    print("Momentum is: ", momentum)
    print("Momentum shape is: ", momentum.shape)
    self.FT_momentum = self.FT_rho = newDistArray(self.FFT,rank=1)
    self.momentum_filtered = self.rho_filtered = newDistArray(self.FFT,rank=1)

So I should be seeing "Before m shape", "m shape", "Between m shape and momentum", and then "Momentum" and "Momentum shape" in that order.

Instead, I see this

In run_analysis
Finished KinEnSpecific
In Acc is not None
Just wrote statistics for AbsRotU
In Method B
Before m shape
Between m shape and momentum
Momentum is:  [[[[-2.57218443e-02 -1.05658602e-02  4.11360814e-03 ... -7.30447838e-02
    -5.70849826e-02 -4.12471236e-02]
   [-2.77948480e-02 -1.25384081e-02  2.21410829e-03 ... -7.54341405e-02
    -5.93471917e-02 -4.34150243e-02]
   [-2.96408314e-02 -1.43042372e-02  5.02051109e-04 ... -7.75418204e-02
    -6.13494920e-02 -4.53412177e-02]
   ...
   [-1.81538550e-02 -3.38080900e-03  1.09509011e-02 ... -6.41938143e-02
    -4.87268856e-02 -3.33130509e-02]
   [-2.09008492e-02 -5.98682529e-03  8.48027330e-03 ... -6.74221531e-02
    -5.17729695e-02 -3.61967936e-02]
   [-2.34236897e-02 -8.38236840e-03  6.20176291e-03 ... -7.03734106e-02
    -5.45598788e-02 -3.88415772e-02]]

  [[-3.22303794e-02 -1.71386351e-02 -2.48425943e-03 ... -7.92659632e-02
    -6.34602314e-02 -4.77104042e-02]
   [-3.46102854e-02 -1.94222252e-02 -4.67318036e-03 ... -8.19786649e-02
    -6.60403258e-02 -5.01780207e-02]
   [-3.67613281e-02 -2.14908542e-02 -6.66814686e-03 ... -8.44022737e-02
    -6.83513502e-02 -5.23996765e-02]
   ...
   [-2.37266175e-02 -9.00242398e-03  5.26630765e-03 ... -6.94178204e-02
    -5.41217900e-02 -3.88299611e-02]
   [-2.67854915e-02 -1.19280135e-02  2.48254501e-03 ... -7.29814546e-02
    -5.74983056e-02 -4.20364081e-02]
   [-2.96212750e-02 -1.46411510e-02 -9.96462510e-05 ... -7.62658852e-02
    -6.06123145e-02 -4.49963303e-02]]

  [[-3.87930516e-02 -2.37574276e-02 -9.16694597e-03 ... -8.54347349e-02
    -6.98229604e-02 -5.42142912e-02]
   [-4.14765947e-02 -2.63509730e-02 -1.16585059e-02 ... -8.84776038e-02
    -7.27270205e-02 -5.69944181e-02]
   [-4.39287941e-02 -2.87243978e-02 -1.39466288e-02 ... -9.12246542e-02
    -7.53548954e-02 -5.95188389e-02]
   ...
   [-2.93541865e-02 -1.46744992e-02 -4.66254810e-04 ... -7.45753775e-02
    -5.94853330e-02 -4.43517831e-02]
   [-3.27307702e-02 -1.79172793e-02 -3.56977910e-03 ... -7.84781234e-02
    -6.31981761e-02 -4.78893794e-02]
   [-3.58776616e-02 -2.09455938e-02 -6.46996414e-03 ... -8.20999889e-02
    -6.66456996e-02 -5.11782400e-02]]

  ...

  [[-1.33103990e-01 -1.22171898e-01 -1.11260477e-01 ... -1.65490900e-01
    -1.54812856e-01 -1.44001449e-01]
   [-1.42845919e-01 -1.31760003e-01 -1.20686634e-01 ... -1.75647136e-01
    -1.64839179e-01 -1.53889550e-01]
   [-1.52368788e-01 -1.41135424e-01 -1.29905858e-01 ... -1.85561953e-01
    -1.74630570e-01 -1.63550773e-01]
   ...
   [-1.02792132e-01 -9.23490470e-02 -8.19544077e-02 ... -1.33873502e-01
    -1.23604880e-01 -1.13228219e-01]
   [-1.13056942e-01 -1.02445049e-01 -9.18725171e-02 ... -1.44591236e-01
    -1.34180319e-01 -1.23652773e-01]
   [-1.23167280e-01 -1.12392354e-01 -1.01647534e-01 ... -1.55134554e-01
    -1.44588579e-01 -1.33916724e-01]]

  [[-1.33555458e-01 -1.22644696e-01 -1.11755622e-01 ... -1.65894371e-01
    -1.55228677e-01 -1.44433589e-01]
   [-1.43454318e-01 -1.32392451e-01 -1.21343555e-01 ... -1.76199810e-01
    -1.65406009e-01 -1.54475460e-01]
   [-1.53144294e-01 -1.41935867e-01 -1.30731662e-01 ... -1.86276997e-01
    -1.75363764e-01 -1.64303426e-01]
   ...
   [-1.02786708e-01 -9.23644383e-02 -8.19930797e-02 ... -1.33828880e-01
    -1.23568205e-01 -1.13205246e-01]
   [-1.13206888e-01 -1.02614761e-01 -9.20632185e-02 ... -1.44700608e-01
    -1.34298835e-01 -1.23785288e-01]
   [-1.23467928e-01 -1.12712550e-01 -1.01988456e-01 ... -1.55393254e-01
    -1.44857517e-01 -1.34200016e-01]]

  [[-1.33905659e-01 -1.23008104e-01 -1.12131789e-01 ... -1.66210510e-01
    -1.55555849e-01 -1.44771206e-01]
   [-1.43952635e-01 -1.32904992e-01 -1.21869925e-01 ... -1.76653597e-01
    -1.65875878e-01 -1.54960441e-01]
   [-1.53797613e-01 -1.42604085e-01 -1.31415519e-01 ... -1.86887051e-01
    -1.75981524e-01 -1.64939833e-01]
   ...
   [-1.02677609e-01 -9.22697985e-02 -8.19147469e-02 ... -1.33697228e-01
    -1.23437210e-01 -1.13082780e-01]
   [-1.13252799e-01 -1.02675211e-01 -9.21386376e-02 ... -1.44721102e-01
    -1.34322317e-01 -1.23818127e-01]
   [-1.23668633e-01 -1.12926915e-01 -1.02216238e-01 ... -1.55567441e-01
    -1.45036205e-01 -1.34388164e-01]]]


 [[[-4.30000192e-01 -4.26281803e-01 -4.22097729e-01 ... -4.37154580e-01
    -4.35430446e-01 -4.33087689e-01]
   [-4.13200226e-01 -4.09544387e-01 -4.05470382e-01 ... -4.20341934e-01
    -4.18606140e-01 -4.16263130e-01]
   [-3.96177486e-01 -3.92598971e-01 -3.88637267e-01 ... -4.03306327e-01
    -4.01564964e-01 -3.99212813e-01]
   ...
   [-4.78958728e-01 -4.75076465e-01 -4.70578639e-01 ... -4.86089588e-01
    -4.84430215e-01 -4.82072884e-01]
   [-4.62890971e-01 -4.59064755e-01 -4.54666929e-01 ... -4.70044082e-01
    -4.68358932e-01 -4.66004529e-01]
   [-4.46566500e-01 -4.42794109e-01 -4.38502849e-01 ... -4.53727395e-01
    -4.52020666e-01 -4.49672732e-01]]

  [[-4.27703209e-01 -4.24726828e-01 -4.21173149e-01 ... -4.32971529e-01
    -4.31817800e-01 -4.30066635e-01]
   [-4.11074014e-01 -4.08162037e-01 -4.04699246e-01 ... -4.16347930e-01
    -4.15161471e-01 -4.13418270e-01]
   [-3.94239825e-01 -3.91386681e-01 -3.88010001e-01 ... -3.99498511e-01
    -3.98285751e-01 -3.96555395e-01]
   ...
   [-4.76165059e-01 -4.73019605e-01 -4.69233379e-01 ... -4.81325863e-01
    -4.80308292e-01 -4.78585539e-01]
   [-4.60266901e-01 -4.57165888e-01 -4.53449906e-01 ... -4.65473861e-01
    -4.64405213e-01 -4.62665905e-01]
   [-4.44107333e-01 -4.41065582e-01 -4.37426006e-01 ... -4.49351791e-01
    -4.48237418e-01 -4.46486974e-01]]

  [[-4.24287974e-01 -4.21899792e-01 -4.18979702e-01 ... -4.27675587e-01
    -4.27154730e-01 -4.26025112e-01]
   [-4.07829168e-01 -4.05491527e-01 -4.02652366e-01 ... -4.11274184e-01
    -4.10702037e-01 -4.09553055e-01]
   [-3.91156298e-01 -3.88880472e-01 -3.86130291e-01 ... -3.94648552e-01
    -3.94030251e-01 -3.92869647e-01]
   ...
   [-4.72230911e-01 -4.69770806e-01 -4.66616808e-01 ... -4.75388785e-01
    -4.75039926e-01 -4.73988932e-01]
   [-4.56499987e-01 -4.54057336e-01 -4.50980068e-01 ... -4.59746174e-01
    -4.59337947e-01 -4.58257731e-01]
   [-4.40515843e-01 -4.38093699e-01 -4.35095376e-01 ... -4.43837588e-01
    -4.43371812e-01 -4.42265620e-01]]

  ...

  [[-6.16653025e-02 -7.04004585e-02 -7.89742293e-02 ... -3.52534168e-02
    -4.40180801e-02 -5.28459992e-02]
   [-5.24427636e-02 -6.10381323e-02 -6.94978131e-02 ... -2.65881355e-02
    -3.51460985e-02 -4.37875335e-02]
   [-4.31763898e-02 -5.16189639e-02 -5.99511926e-02 ... -1.79151782e-02
    -2.62549046e-02 -3.46977901e-02]
   ...
   [-8.90594983e-02 -9.81220509e-02 -1.06947681e-01 ... -6.12661370e-02
    -7.05519843e-02 -7.98423727e-02]
   [-7.99721111e-02 -8.89437462e-02 -9.77028338e-02 ... -5.25829515e-02
    -6.17136413e-02 -7.08688073e-02]
   [-7.08411721e-02 -7.97031798e-02 -8.83777906e-02 ... -4.39135849e-02
    -5.28701224e-02 -6.18708455e-02]]

  [[-4.39244092e-02 -5.27882487e-02 -6.15197992e-02 ... -1.73100131e-02
    -2.61114566e-02 -3.50067972e-02]
   [-3.49584065e-02 -4.36807817e-02 -5.22957826e-02 ... -8.89735094e-03
    -1.74947763e-02 -2.62050446e-02]
   [-2.59576267e-02 -3.45242394e-02 -4.30092473e-02 ... -4.95558750e-04
    -8.87404050e-03 -1.73836975e-02]
   ...
   [-7.06610379e-02 -7.98374754e-02 -8.88100550e-02 ... -4.27170027e-02
    -5.20231933e-02 -6.13629823e-02]
   [-6.17740215e-02 -7.08666413e-02 -7.97784816e-02 ... -3.42151214e-02
    -4.33712280e-02 -5.25823945e-02]
   [-5.28619087e-02 -6.18500875e-02 -7.06812727e-02 ... -2.57451721e-02
    -3.47336334e-02 -4.37970553e-02]]

  [[-2.62121696e-02 -3.51774526e-02 -4.40419383e-02 ...  5.17209794e-04
    -8.29205362e-03 -1.72251982e-02]
   [-1.74915942e-02 -2.63178174e-02 -3.50669599e-02 ...  8.69620789e-03
     8.67441858e-05 -8.66545607e-03]
   [-8.75583665e-03 -1.74254909e-02 -2.60426597e-02 ...  1.68369784e-02
     8.44431719e-03 -1.08710888e-04]
   ...
   [-5.23408840e-02 -6.15977461e-02 -7.06799583e-02 ... -2.43205830e-02
    -3.36258547e-02 -4.29905323e-02]
   [-4.36394597e-02 -5.28195222e-02 -6.18514920e-02 ... -1.59981092e-02
    -2.51542319e-02 -3.43920140e-02]
   [-3.49271951e-02 -4.40106009e-02 -5.29698890e-02 ... -7.71353523e-03
    -1.67049200e-02 -2.57998029e-02]]]


 [[[-1.27697068e-01 -1.39189479e-01 -1.50511973e-01 ... -9.24928489e-02
    -1.04322478e-01 -1.16007042e-01]
   [-1.30705156e-01 -1.42127137e-01 -1.53441611e-01 ... -9.55003676e-02
    -1.07309064e-01 -1.18962511e-01]
   [-1.33715910e-01 -1.45096280e-01 -1.56388105e-01 ... -9.85739871e-02
    -1.10349164e-01 -1.21984163e-01]
   ...
   [-1.19021630e-01 -1.30639966e-01 -1.41914474e-01 ... -8.39735697e-02
    -9.57932508e-02 -1.07476786e-01]
   [-1.21825562e-01 -1.33455016e-01 -1.44738196e-01 ... -8.67217345e-02
    -9.85556643e-02 -1.10251874e-01]
   [-1.24734041e-01 -1.36293420e-01 -1.47607981e-01 ... -8.95635563e-02
    -1.01401445e-01 -1.13099448e-01]]

  [[-1.17686445e-01 -1.29211661e-01 -1.40350036e-01 ... -8.28721424e-02
    -9.46352466e-02 -1.06242633e-01]
   [-1.20595811e-01 -1.32024192e-01 -1.43168632e-01 ... -8.58088352e-02
    -9.75465717e-02 -1.09126960e-01]
   [-1.23553810e-01 -1.34882197e-01 -1.46012821e-01 ... -8.88281161e-02
    -1.00528974e-01 -1.12068132e-01]
   ...
   [-1.09524055e-01 -1.20888378e-01 -1.32207838e-01 ... -7.46552154e-02
    -8.64265249e-02 -9.80450974e-02]
   [-1.12173580e-01 -1.23606228e-01 -1.34856180e-01 ... -7.72845865e-02
    -8.90632776e-02 -1.00690070e-01]
   [-1.14891866e-01 -1.26389982e-01 -1.37575298e-01 ... -8.00266670e-02
    -9.18026270e-02 -1.03424849e-01]]

  [[-1.07884923e-01 -1.19197363e-01 -1.30364431e-01 ... -7.32405378e-02
    -8.49568411e-02 -9.64993447e-02]
   [-1.10659585e-01 -1.22007145e-01 -1.33078913e-01 ... -7.61168796e-02
    -8.78012571e-02 -9.93128771e-02]
   [-1.13492847e-01 -1.24861729e-01 -1.35838141e-01 ... -7.90938141e-02
    -9.07345957e-02 -1.02204226e-01]
   ...
   [-1.00020109e-01 -1.11281059e-01 -1.22513648e-01 ... -6.53051982e-02
    -7.70457235e-02 -8.86110967e-02]
   [-1.02552091e-01 -1.13800572e-01 -1.25104643e-01 ... -6.78272256e-02
    -7.95714680e-02 -9.11394952e-02]
   [-1.05177389e-01 -1.16449498e-01 -1.27711479e-01 ... -7.04749230e-02
    -8.22114232e-02 -9.37721001e-02]]

  ...

  [[ 1.71415393e-01  1.61576733e-01  1.51605586e-01 ...  1.99845934e-01
     1.90577682e-01  1.81091911e-01]
   [ 1.72925690e-01  1.63107612e-01  1.53147219e-01 ...  2.01241774e-01
     1.92020687e-01  1.82572863e-01]
   [ 1.73908175e-01  1.64122254e-01  1.54179224e-01 ...  2.02047534e-01
     1.92897812e-01  1.83509223e-01]
   ...
   [ 1.63798130e-01  1.53937972e-01  1.43995133e-01 ...  1.92614318e-01
     1.83163289e-01  1.73548827e-01]
   [ 1.66817470e-01  1.56963985e-01  1.47007784e-01 ...  1.95489057e-01
     1.86106445e-01  1.76540551e-01]
   [ 1.69368038e-01  1.59520465e-01  1.49553270e-01 ...  1.97910015e-01
     1.88589669e-01  1.79066979e-01]]

  [[ 1.80262070e-01  1.70667897e-01  1.60929647e-01 ...  2.07923131e-01
     1.98914065e-01  1.89685813e-01]
   [ 1.82108299e-01  1.72533550e-01  1.62800509e-01 ...  2.09621879e-01
     2.00676428e-01  1.91497400e-01]
   [ 1.83395104e-01  1.73845497e-01  1.64127525e-01 ...  2.10755591e-01

This repeats 8 times, and each time the Momentum output has different numbers.

After the 8th time, we see this:

Momentum shape is:  (3, 32, 256, 256)
About to perform FFT
     4.09340482e-01  4.05844495e-01]]]]
Momentum shape is:  (3, 32, 256, 256)
About to perform FFT
     4.14556144e-01  4.19541179e-01]]]]
Momentum shape is:  (3, 32, 256, 256)
About to perform FFT
     0.15951451]]]]
Momentum shape is:  (3, 32, 256, 256)
About to perform FFT
     5.75028230e-01  5.80679185e-01]]]]
Momentum shape is:  (3, 32, 256, 256)
About to perform FFT
    -7.28528795e-02 -7.69183401e-02]]]]
Momentum shape is:  (3, 32, 256, 256)
About to perform FFT
    -1.11016810e-01 -1.22829347e-01]]]]
Momentum shape is:  (3, 32, 256, 256)
About to perform FFT
    0.14176391]]]]
Momentum shape is:  (3, 32, 256, 256)
About to perform FFT

So for some reason, it's printing things out of order.
I'm assuming this has to do with the parallel programming?

@aurora-cossairt
Copy link
Collaborator Author

Latest issue

Traceback (most recent call last):
  File "/mnt/home/f0008575/src/energy-transfer-analysis/run_analysis.py", line 5, in <module>
    from FlowAnalysis import FlowAnalysis
  File "/mnt/home/f0008575/src/energy-transfer-analysis/FlowAnalysis.py", line 208
    self.FT_rho = self.FFT.forward(self.rho, self.FT_rho)
       ^
SyntaxError: invalid syntax

Interestingly, there is no complaint from line 191, in which I run
self.FT_momentum[i] = self.FFT.forward(momentum[i], self.FT_momentum[i])
The only difference that I can see is that this line is run in a for loop. But I don't believe rho should need a for loop...?

@aurora-cossairt
Copy link
Collaborator Author

aurora-cossairt commented Jul 10, 2019

So, the previous issue was because I left a rogue tracer in the code... so it kept timing out while it waited for me to respond... oops.

Now we finally have real issues! When I run

srun -n 1 --mem-per-cpu=20G --time=00:10:00 python ~/src/energy-transfer-analysis/run_analysis.py --res 256 --data_path
 /mnt/scratch/f0008575/a-1.00/id0/Turb.0010.vtk  --data_type Athena --type flow --eos isothermal -forced --outfile /mnt/scratch/f0008575/a-1.00/method_b_0010.hdf5 --ker
nel KernelGauss

I get the following error:

Traceback (most recent call last):
  File "/mnt/home/f0008575/src/energy-transfer-analysis/run_analysis.py", line 221, in <module>
    FA.run_analysis()
  File "/mnt/home/f0008575/src/energy-transfer-analysis/FlowAnalysis.py", line 238, in run_analysis
    self.momentum_filtered[j] = self.FFT.backward(FT_G * self.FT_momentum[j], self.momentum_filtered[j]) # We know FT_momentum is shape (3,256,256,256), so shape of self.FT_momentum[j] must be (256,256,256). Apparently something else (either momentum_filtered[j] or FT_G) is shape (223,)
ValueError: operands could not be broadcast together with shapes (223,) (256,256,256)

After investigating with some print statements, I discovered the problem: FT_G has shape (223, ) while self.momentum_filtered[j] has shape (256, 256, 256) so when I try to perform FT_G * self.momentum_filtered[j], it can't broadcast the shapes together.
The reason FT_G is shape (223, ) is because it is based on k_bins, which is also shape (223, ). I use this in the kernel function where, before, we had k=Freq( ) # array of wavenumbers.
self.momentum_filtered[j], on the other hand, is based on FT_momentum, which is based on momentum, both of which have shapes (256, 256, 256) because the resolution is 256.
So, my guess is that either I should not be using k_bins in the kernel function, or I'm defining momentum incorrectly (and that problem is trickling down to self.momentum_filtered.

Also, I notice that when I create a Gaussian Kernel, only the first 43 entries are nonzero, and the remaining 180 entries are zeros:

Gaussian kernel is:  [9.02299856e-001 3.96422224e-001 7.65195145e-002 6.48923532e-003
 2.41780876e-004 3.95783310e-006 2.84642740e-008 8.99393722e-011
 1.24855218e-013 7.61501303e-017 2.04052401e-020 2.40225925e-024
 1.24252502e-028 2.82356324e-033 2.81901250e-038 1.23652696e-043
 2.38296291e-049 2.01761399e-055 7.50526422e-062 1.22659446e-068
 8.80730657e-076 2.77838443e-083 3.85077962e-091 2.34483398e-099
 6.27310619e-108 7.37327251e-117 3.80754493e-126 8.63847129e-136
 8.61064844e-146 3.77087318e-156 7.25529545e-167 6.13303415e-178
 2.27773277e-189 3.71652675e-201 2.66427384e-213 8.39126749e-226
 1.16113676e-238 7.05905054e-252 1.88545561e-265 2.21255177e-279
 1.14071637e-293 2.58386021e-308 2.47032823e-323 0.00000000e+000
 0.00000000e+000 0.00000000e+000 0.00000000e+000 0.00000000e+000
 0.00000000e+000 0.00000000e+000 0.00000000e+000 0.00000000e+000
 0.00000000e+000 0.00000000e+000 0.00000000e+000 0.00000000e+000
 0.00000000e+000 0.00000000e+000 0.00000000e+000 0.00000000e+000
 0.00000000e+000 0.00000000e+000 0.00000000e+000 0.00000000e+000
 0.00000000e+000 0.00000000e+000 0.00000000e+000 0.00000000e+000
 0.00000000e+000 0.00000000e+000 0.00000000e+000 0.00000000e+000
 0.00000000e+000 0.00000000e+000 0.00000000e+000 0.00000000e+000
 0.00000000e+000 0.00000000e+000 0.00000000e+000 0.00000000e+000
 0.00000000e+000 0.00000000e+000 0.00000000e+000 0.00000000e+000
 0.00000000e+000 0.00000000e+000 0.00000000e+000 0.00000000e+000
 0.00000000e+000 0.00000000e+000 0.00000000e+000 0.00000000e+000
 0.00000000e+000 0.00000000e+000 0.00000000e+000 0.00000000e+000
 0.00000000e+000 0.00000000e+000 0.00000000e+000 0.00000000e+000
 0.00000000e+000 0.00000000e+000 0.00000000e+000 0.00000000e+000
 0.00000000e+000 0.00000000e+000 0.00000000e+000 0.00000000e+000
 0.00000000e+000 0.00000000e+000 0.00000000e+000 0.00000000e+000
 0.00000000e+000 0.00000000e+000 0.00000000e+000 0.00000000e+000
 0.00000000e+000 0.00000000e+000 0.00000000e+000 0.00000000e+000
 0.00000000e+000 0.00000000e+000 0.00000000e+000 0.00000000e+000
 0.00000000e+000 0.00000000e+000 0.00000000e+000 0.00000000e+000
 0.00000000e+000 0.00000000e+000 0.00000000e+000 0.00000000e+000
 0.00000000e+000 0.00000000e+000 0.00000000e+000 0.00000000e+000
 0.00000000e+000 0.00000000e+000 0.00000000e+000 0.00000000e+000
 0.00000000e+000 0.00000000e+000 0.00000000e+000 0.00000000e+000
 0.00000000e+000 0.00000000e+000 0.00000000e+000 0.00000000e+000
 0.00000000e+000 0.00000000e+000 0.00000000e+000 0.00000000e+000
 0.00000000e+000 0.00000000e+000 0.00000000e+000 0.00000000e+000
 0.00000000e+000 0.00000000e+000 0.00000000e+000 0.00000000e+000
 0.00000000e+000 0.00000000e+000 0.00000000e+000 0.00000000e+000
 0.00000000e+000 0.00000000e+000 0.00000000e+000 0.00000000e+000
 0.00000000e+000 0.00000000e+000 0.00000000e+000 0.00000000e+000
 0.00000000e+000 0.00000000e+000 0.00000000e+000 0.00000000e+000
 0.00000000e+000 0.00000000e+000 0.00000000e+000 0.00000000e+000
 0.00000000e+000 0.00000000e+000 0.00000000e+000 0.00000000e+000
 0.00000000e+000 0.00000000e+000 0.00000000e+000 0.00000000e+000
 0.00000000e+000 0.00000000e+000 0.00000000e+000 0.00000000e+000
 0.00000000e+000 0.00000000e+000 0.00000000e+000 0.00000000e+000
 0.00000000e+000 0.00000000e+000 0.00000000e+000 0.00000000e+000
 0.00000000e+000 0.00000000e+000 0.00000000e+000 0.00000000e+000
 0.00000000e+000 0.00000000e+000 0.00000000e+000 0.00000000e+000
 0.00000000e+000 0.00000000e+000 0.00000000e+000 0.00000000e+000
 0.00000000e+000 0.00000000e+000 0.00000000e+000 0.00000000e+000
 0.00000000e+000 0.00000000e+000 0.00000000e+000 0.00000000e+000
 0.00000000e+000 0.00000000e+000 0.00000000e+000]

So that's weird.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant