This page provides basic tutorials about the usage of MMAction2. For installation instructions, please see install.md.
It is recommended to symlink the dataset root to $MMACTION2/data
.
If your folder structure is different, you may need to change the corresponding paths in config files.
mmaction
├── mmaction
├── tools
├── config
├── data
│ ├── kinetics400
│ │ ├── rawframes_train
│ │ ├── rawframes_val
│ │ ├── kinetics_train_list.txt
│ │ ├── kinetics_val_list.txt
│ ├── ucf101
│ │ ├── rawframes_train
│ │ ├── rawframes_val
│ │ ├── ucf101_train_list.txt
│ │ ├── ucf101_val_list.txt
For more information on data preparation, please see data_preparation.md
For using custom datasets, please refer to Tutorial 2: Adding New Dataset
We provide testing scripts to evaluate a whole dataset (Kinetics-400, Something-Something V1&V2, (Multi-)Moments in Time, etc.), and provide some high-level apis for easier integration to other projects.
- single GPU
- single node multiple GPUs
- multiple node
You can use the following commands to test a dataset.
# single-gpu testing
python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}] \
[--gpu-collect] [--tmpdir ${TMPDIR}] [--options ${OPTIONS}] [--average-clips ${AVG_TYPE}] \
[--launcher ${JOB_LAUNCHER}] [--local_rank ${LOCAL_RANK}]
# multi-gpu testing
./tools/dist_test.sh ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}] \
[--gpu-collect] [--tmpdir ${TMPDIR}] [--options ${OPTIONS}] [--average-clips ${AVG_TYPE}] \
[--launcher ${JOB_LAUNCHER}] [--local_rank ${LOCAL_RANK}]
Optional arguments:
GPU_NUM
: Number of GPU used to test model. If not specified, it will be set to 1.RESULT_FILE
: Filename of the output results. If not specified, the results will not be saved to a file.EVAL_METRICS
: Items to be evaluated on the results. Allowed values depend on the dataset, e.g.,top_k_accuracy
,mean_class_accuracy
are available for all datasets in recognition,mean_average_precision
for Multi-Moments in Time,AR@AN
for ActivityNet, etc.--gpu-collect
: If specified, recognition results will be collected using gpu communication. Otherwise, it will save the results on different gpus toTMPDIR
and collect them by the rank 0 worker.TMPDIR
: Temporary directory used for collecting results from multiple workers, available when--gpu-collect
is not specified.OPTIONS
: Custom options used for evaluation. Allowed values depend on the arguments of theevaluate
function in dataset.AVG_TYPE
: Items to average the test clips. If set toprob
, it will apply softmax before averaging the clip scores. Otherwise, it will directly average the clip scores.JOB_LAUNCHER
: Items for distributed job initialization launcher. Allowed choices arenone
,pytorch
,slurm
,mpi
. Especially, if set to none, it will test in a non-distributed mode.LOCAL_RANK
: ID for local rank. If not specified, it will be set to 0.
Examples:
Assume that you have already downloaded the checkpoints to the directory checkpoints/
.
-
Test TSN on Kinetics-400 (without saving the test results) and evaluate the top-k accuracy and mean class accuracy.
python tools/test.py configs/recognition/tsn/tsn_r50_1x1x3_100e_kinetics400_rgb.py \ checkpoints/SOME_CHECKPOINT.pth \ --eval top_k_accuracy mean_class_accuracy
-
Test TSN on Something-Something V1 with 8 GPUS, and evaluate the top-k accuracy.
./tools/dist_test.py configs/recognition/tsn/tsn_r50_1x1x8_50e_sthv1_rgb.py \ checkpoints/SOME_CHECKPOINT.pth \ 8 --out results.pkl --eval top_k_accuracy
-
Test TSN on Kinetics-400 in slurm environment and evaluate the top-k accuracy
python tools/test.py configs/recognition/tsn/tsn_r50_1x1x3_100e_kinetics400_rgb.py \ checkpoints/SOME_CHECKPOINT.pth \ --launcher slurm --eval top_k_accuracy
We provide a demo script to predict the recognition result using a single video.
python demo/demo.py ${CONFIG_FILE} ${CHECKPOINT_FILE} ${VIDEO_FILE} [--device ${GPU_ID}]
Examples:
python demo/demo.py configs/recognition/tsn/tsn_r50_video_inference_1x1x3_100e_kinetics400_rgb.p checkpoints/tsn.pth demo/demo.mp4
Here is an example of building the model and testing a given video.
import torch
from mmaction.apis import init_recognizer, inference_recognizer
config_file = 'configs/recognition/tsn/tsn_r50_video_inference_1x1x3_100e_kinetics400_rgb.py'
# download the checkpoint from model zoo and put it in `checkpoints/`
checkpoint_file = 'checkpoints/tsn_r50_1x1x3_100e_kinetics400_rgb_20200614-e508be42.pth'
# assign the desired device.
device = 'cuda:0' # or 'cpu'
device = torch.device(device)
# build the model from a config file and a checkpoint file
model = init_recognizer(config_file, checkpoint_file, device=device)
# test a single video and show the result:
video = 'demo/demo.mp4'
labels = 'demo/label_map.txt'
results = inference_recognizer(model, video, labels)
# show the results
print(f'The top-5 labels with corresponding scores are:')
for result in results:
print(f'{result[0]}: ', result[1])
Here is an example of building the model and testing with a given rawframes directory.
import torch
from mmaction.apis import init_recognizer, inference_recognizer
config_file = 'configs/recognition/tsn/tsn_r50_inference_1x1x3_100e_kinetics400_rgb.py'
# download the checkpoint from model zoo and put it in `checkpoints/`
checkpoint_file = 'checkpoints/tsn_r50_1x1x3_100e_kinetics400_rgb_20200614-e508be42.pth'
# assign the desired device.
device = 'cuda:0' # or 'cpu'
device = torch.device(device)
# build the model from a config file and a checkpoint file
model = init_recognizer(config_file, checkpoint_file, device=device, use_frames=True)
# test rawframe directory of a single video and show the result:
video = 'SOME_DIR_PATH/'
labels = 'demo/label_map.txt'
results = inference_recognizer(model, video, labels, use_frames=True)
# show the results
print(f'The top-5 labels with corresponding scores are:')
for result in results:
print(f'{result[0]}: ', result[1])
Note: We define data_prefix
in config files and set it None as default for our provided inference configs.
If the data_prefix
is not None, the path for the video file (or rawframe directory) to get will be osp.path(data_prefix, video)
.
Here, the video
is the param in the demo scripts above.
This detail can be found in rawframe_dataset.py
and video_dataset.py
. For example,
-
When video (rawframes) path is
SOME_DIR_PATH/VIDEO.mp4
(SOME_DIR_PATH/VIDEO_NAME/img_xxxxx.jpg
), anddata_prefix
is None in the config file, the paramvideo
should beSOME_DIR_PATH/VIDEO.mp4
(SOME_DIR_PATH/VIDEO_NAME
). -
When video (rawframes) path is
SOME_DIR_PATH/VIDEO.mp4
(SOME_DIR_PATH/VIDEO_NAME/img_xxxxx.jpg
), anddata_prefix
isSOME_DIR_PATH
in the config file, the paramvideo
should beVIDEO.mp4
(VIDEO_NAME
). -
When rawframes path is
VIDEO_NAME/img_xxxxx.jpg
, anddata_prefix
is None in the config file, the paramvideo
should beVIDEO_NAME
.
A notebook demo can be found in demo/demo.ipynb
In MMAction2, model components are basically categorized as 4 types.
- recognizer: the whole recognizer model pipeline, usually contains a backbone and cls_head.
- backbone: usually an FCN network to extract feature maps, e.g., ResNet, BNInception.
- cls_head: the component for classification task, usually contains an FC layer with some pooling layers.
- localizer: the model for localization task, currently available: BSN, BMN.
Following some basic pipelines (e.g., Recognizer2D
), the model structure
can be customized through config files with no pains.
If we want to implement some new components, e.g., the temporal shift backbone structure as in TSM: Temporal Shift Module for Efficient Video Understanding, there are several things to do.
-
create a new file in
mmaction/models/backbones/resnet_tsm.py
.from ..registry import BACKBONES from .resnet import ResNet @BACKBONES.register_module() class ResNetTSM(ResNet): def __init__(self, depth, num_segments=8, is_shift=True, shift_div=8, shift_place='blockres', temporal_pool=False, **kwargs): pass def forward(self, x): # implementation is ignored pass
-
Import the module in
mmaction/models/backbones/__init__.py
from .resnet_tsm import ResNetTSM
-
modify the config file from
backbone=dict( type='ResNet', pretrained='torchvision://resnet50', depth=50, norm_eval=False)
to
backbone=dict( type='ResNetTSM', pretrained='torchvision://resnet50', depth=50, norm_eval=False, shift_div=8)
To write a new recognition pipeline, you need to inherit from BaseRecognizer
,
which defines the following abstract methods.
forward_train()
: forward method of the training mode.forward_test()
: forward method of the testing mode.
Recognizer2D and Recognizer3D are good examples which show how to do that.
MMAction2 implements distributed training and non-distributed training,
which uses MMDistributedDataParallel
and MMDataParallel
respectively.
We adopt distributed training for both single machine and multiple machines. Supposing that the server has 8 GPUs, 8 processes will be started and each process runs on a single GPU.
Each process keeps an isolated model, data loader, and optimizer. Model parameters are only synchronized once at the beginning. After a forward and backward pass, gradients will be allreduced among all GPUs, and the optimizer will update model parameters. Since the gradients are allreduced, the model parameter stays the same for all processes after the iteration.
All outputs (log files and checkpoints) will be saved to the working directory,
which is specified by work_dir
in the config file.
By default we evaluate the model on the validation set after each epoch, you can change the evaluation interval by modifying the interval argument in the training config
evaluation = dict(interval=5) # This evaluate the model per 5 epoch.
According to the Linear Scaling Rule, you need to set the learning rate proportional to the batch size if you use different GPUs or videos per GPU, e.g., lr=0.01 for 4 GPUs * 2 video/gpu and lr=0.08 for 16 GPUs * 4 video/gpu.
python tools/train.py ${CONFIG_FILE} [optional arguments]
If you want to specify the working directory in the command, you can add an argument --work-dir ${YOUR_WORK_DIR}
.
./tools/dist_train.sh ${CONFIG_FILE} ${GPU_NUM} [optional arguments]
Optional arguments are:
--validate
(strongly recommended): Perform evaluation at every k (default value is 5, which can be modified by changing theinterval
value inevaluation
dict in each config file) epochs during the training.--work-dir ${WORK_DIR}
: Override the working directory specified in the config file.--resume-from ${CHECKPOINT_FILE}
: Resume from a previous checkpoint file.--gpus ${GPU_NUM}
: Number of gpus to use, which is only applicable to non-distributed training.--gpu-ids ${GPU_IDS}
: IDs of gpus to use, which is only applicable to non-distributed training.--seed ${SEED}
: Seed id for random state in python, numpy and pytorch to generate random numbers.--deterministic
: If specified, it will set deterministic options for CUDNN backend.JOB_LAUNCHER
: Items for distributed job initialization launcher. Allowed choices arenone
,pytorch
,slurm
,mpi
. Especially, if set to none, it will test in a non-distributed mode.LOCAL_RANK
: ID for local rank. If not specified, it will be set to 0.
Difference between resume-from
and load-from
:
resume-from
loads both the model weights and optimizer status, and the epoch is also inherited from the specified checkpoint. It is usually used for resuming the training process that is interrupted accidentally.
load-from
only loads the model weights and the training epoch starts from 0. It is usually used for finetuning.
Here is an example of using 8 GPUs to load TSN checkpoint.
./tools/dist_train.sh configs/recognition/tsn/tsn_r50_1x1x3_100e_kinetics400_rgb.py 8 --resume-from work_dirs/tsn_r50_1x1x3_100e_kinetics400_rgb/latest.pth
If you can run MMAction2 on a cluster managed with slurm, you can use the script slurm_train.sh
. (This script also supports single machine training.)
[GPUS=${GPUS}] ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} ${CONFIG_FILE} ${WORK_DIR}
Here is an example of using 16 GPUs to train TSN on the dev partition in a slurm cluster. (use GPUS_PER_NODE=8
to specify a single slurm cluster node with 8 GPUs.)
GPUS=16 ./tools/slurm_train.sh dev tsn_r50_k400 configs/recognition/tsn/tsn_r50_1x1x3_100e_kinetics400_rgb.py work_dirs/tsn_r50_1x1x3_100e_kinetics400_rgb
You can check slurm_train.sh for full arguments and environment variables.
If you have just multiple machines connected with ethernet, you can refer to pytorch launch utility. Usually it is slow if you do not have high speed networking like InfiniBand.
If you launch multiple jobs on a single machine, e.g., 2 jobs of 4-GPU training on a machine with 8 GPUs, you need to specify different ports (29500 by default) for each job to avoid communication conflict.
If you use dist_train.sh
to launch training jobs, you can set the port in commands.
CUDA_VISIBLE_DEVICES=0,1,2,3 PORT=29500 ./tools/dist_train.sh ${CONFIG_FILE} 4
CUDA_VISIBLE_DEVICES=4,5,6,7 PORT=29501 ./tools/dist_train.sh ${CONFIG_FILE} 4
If you use launch training jobs with slurm, you need to modify the config files (usually the 6th line from the bottom in config files) to set different communication ports.
In config1.py
,
dist_params = dict(backend='nccl', port=29500)
In config2.py
,
dist_params = dict(backend='nccl', port=29501)
Then you can launch two jobs with config1.py
ang config2.py
.
CUDA_VISIBLE_DEVICES=0,1,2,3 GPUS=4 ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} config1.py ${WORK_DIR}
CUDA_VISIBLE_DEVICES=4,5,6,7 GPUS=4 ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} config2.py ${WORK_DIR}
We provide lots of useful tools under tools/
directory.
You can plot loss/top-k acc curves given a training log file. Run pip install seaborn
first to install the dependency.
python tools/analyze_logs.py plot_curve ${JSON_LOGS} [--keys ${KEYS}] [--title ${TITLE}] [--legend ${LEGEND}] [--backend ${BACKEND}] [--style ${STYLE}] [--out ${OUT_FILE}]
Examples:
- Plot the classification loss of some run.
python tools/analyze_logs.py plot_curve log.json --keys loss_cls --legend loss_cls
- Plot the top-1 acc and top-5 acc of some run, and save the figure to a pdf.
python tools/analyze_logs.py plot_curve log.json --keys top1_acc top5_acc --out results.pdf
- Compare the top-1 acc of two runs in the same figure.
python tools/analyze_logs.py plot_curve log1.json log2.json --keys top1_acc --legend run1 run2
You can also compute the average training speed.
python tools/analyze_logs.py cal_train_time ${JSON_LOGS} [--include-outliers]
- Compute the average training speed for a config file
python tools/analyze_logs.py cal_train_time work_dirs/some_exp/20200422_153324.log.json
The output is expected to be like the following.
-----Analyze train time of work_dirs/some_exp/20200422_153324.log.json-----
slowest epoch 60, average time is 0.9736
fastest epoch 18, average time is 0.9001
time std over epochs is 0.0177
average iter time: 0.9330 s/iter
We provide a script adapted from flops-counter.pytorch to compute the FLOPs and params of a given model.
python tools/get_flops.py ${CONFIG_FILE} [--shape ${INPUT_SHAPE}]
We will get the result like this
Input shape: (1, 3, 32, 340, 256)
Flops: 37.1 GMac
Params: 28.04 M
Note: This tool is still experimental and we do not guarantee that the number is correct. You may use the result for simple comparisons well, but double check it before you adopt it in technical reports or papers.
(1) FLOPs are related to the input shape while parameters are not. The default input shape is (1, 3, 340, 256) for 2D recognizer, (1, 3, 32, 340, 256) for 3D recognizer.
(2) Some operators are not counted into FLOPs like GN and custom operators. Refer to mmcv.cnn.get_model_complexity_info()
for details.
Before you upload a model to AWS, you may want to: (1) convert model weights to CPU tensors. (2) delete the optimizer states. (3) compute the hash of the checkpoint file and append the hash id to the filename.
python tools/publish_model.py ${INPUT_FILENAME} ${OUTPUT_FILENAME}
E.g.,
python tools/publish_model.py work_dirs/tsn_r50_1x1x3_100e_kinetics400_rgb/latest.pth tsn_r50_1x1x3_100e_kinetics400_rgb.pth
The final output filename will be tsn_r50_1x1x3_100e_kinetics400_rgb-{hash id}.pth
.
Currently, we provide some tutorials for users to finetune model, add new dataset, add new modules.