forked from ksw0306/FloWaveNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_apex.py
323 lines (257 loc) · 13 KB
/
train_apex.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
import torch
from torch import optim
import torch.nn as nn
from torch.utils.data import DataLoader
from data import LJspeechDataset, collate_fn, collate_fn_synthesize
from model import Flowavenet
from torch.distributions.normal import Normal
import numpy as np
import librosa
import argparse
import time
import json
import gc
import os
from tqdm import tqdm
from apex import amp
from apex.parallel import DistributedDataParallel
# Distributed Training implemented with Apex utilities https://github.com/NVIDIA/apex,
# which handle some issues with specific nodes in the FloWaveNet architecture.
# List of changes made in train.py:
# 1. Determine local_rank and world_size for torch.distributed.init_process_group
# 2. Set a current device with torch.cuda.set_device
# 3. Wrap dataset with torch.utils.data.distributed.DistributedSampler
# 4. Apply amp.scale_loss at each backward pass
# 5. Clip gradient with amp.master_params
# 6. Divide step_size by world_size (not sure if this is necessary)
# 7. Initialize model and optimizer with amp.initialize
# 8. Wrap model with apex.parallel.DistributedDataParallel
# 9. Handle evaluation and messages on the first node using args.local_rank
# For example, to run on 4 GPUs, use the following command:
# python -m torch.distributed.launch --nproc_per_node=4 train_apex.py --num_workers 2 --epochs 1000
torch.backends.cudnn.benchmark = True
np.set_printoptions(precision=4)
torch.manual_seed(1111)
parser = argparse.ArgumentParser(description='Train FloWaveNet of LJSpeech on multiple GPUs with Apex',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--local_rank', default=0, type=int)
parser.add_argument('--data_path', type=str, default='./DATASETS/ljspeech/', help='Dataset Path')
parser.add_argument('--sample_path', type=str, default='./samples', help='Sample Path')
parser.add_argument('--save', '-s', type=str, default='./params', help='Folder to save checkpoints.')
parser.add_argument('--load_step', '-l', type=int, default=0, help='Load Step')
parser.add_argument('--log', type=str, default='./log', help='Log folder.')
parser.add_argument('--model_name', type=str, default='flowavenet', help='Model Name')
parser.add_argument('--epochs', '-e', type=int, default=5000, help='Number of epochs to train.')
parser.add_argument('--batch_size', '-b', type=int, default=2, help='Batch size.')
parser.add_argument('--learning_rate', '-lr', type=float, default=0.001, help='The Learning Rate.')
parser.add_argument('--loss', type=str, default='./loss', help='Folder to save loss')
parser.add_argument('--n_layer', type=int, default=2, help='Number of layers')
parser.add_argument('--n_flow', type=int, default=6, help='Number of layers')
parser.add_argument('--n_block', type=int, default=8, help='Number of layers')
parser.add_argument('--cin_channels', type=int, default=80, help='Cin Channels')
parser.add_argument('--block_per_split', type=int, default=4, help='Block per split')
parser.add_argument('--num_workers', type=int, default=2, help='Number of workers')
args = parser.parse_args()
current_env = os.environ.copy()
world_size = int(current_env['WORLD_SIZE'])
torch.distributed.init_process_group(backend='nccl', world_size=world_size, rank=args.local_rank)
torch.cuda.set_device(args.local_rank)
if args.local_rank == 0:
# Init logger
if not os.path.isdir(args.log):
os.makedirs(args.log)
# Checkpoint dir
if not os.path.isdir(args.save):
os.makedirs(args.save)
if not os.path.isdir(args.loss):
os.makedirs(args.loss)
if not os.path.isdir(args.sample_path):
os.makedirs(args.sample_path)
if not os.path.isdir(os.path.join(args.sample_path, args.model_name)):
os.makedirs(os.path.join(args.sample_path, args.model_name))
if not os.path.isdir(os.path.join(args.save, args.model_name)):
os.makedirs(os.path.join(args.save, args.model_name))
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
# LOAD DATASETS
train_dataset = LJspeechDataset(args.data_path, True, 0.1)
test_dataset = LJspeechDataset(args.data_path, False, 0.1)
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, sampler=train_sampler, drop_last=True, collate_fn=collate_fn,
num_workers=args.num_workers, pin_memory=True)
test_loader = DataLoader(test_dataset, batch_size=args.batch_size, collate_fn=collate_fn,
num_workers=args.num_workers, pin_memory=True)
synth_loader = DataLoader(test_dataset, batch_size=1, collate_fn=collate_fn_synthesize,
num_workers=args.num_workers, pin_memory=True)
def build_model():
pretrained = True if args.load_step > 0 else False
model = Flowavenet(in_channel=1,
cin_channel=args.cin_channels,
n_block=args.n_block,
n_flow=args.n_flow,
n_layer=args.n_layer,
affine=True,
pretrained=pretrained,
block_per_split=args.block_per_split)
return model
def train(epoch, model, optimizer, scheduler):
global global_step
epoch_loss = 0.0
running_num = 0
running_loss = np.zeros(3)
train_sampler.set_epoch(epoch)
model.train()
bar = tqdm(train_loader) if args.local_rank == 0 else train_loader
for batch_idx, (x, c) in enumerate(bar):
scheduler.step()
global_step += 1
x, c = x.to(device, non_blocking=True), c.to(device, non_blocking=True)
optimizer.zero_grad()
log_p, logdet = model(x, c)
log_p, logdet = torch.mean(log_p), torch.mean(logdet)
loss = -(log_p + logdet)
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
nn.utils.clip_grad_norm_(amp.master_params(optimizer), 1.)
optimizer.step()
running_num += 1
running_loss[0] += loss.item()
running_loss[1] += log_p.item()
running_loss[2] += logdet.item()
epoch_loss += loss.item()
if args.local_rank == 0:
bar.set_description('{}/{}, [Log pdf, Log p(z), Log Det] : {}'
.format(epoch, global_step, running_loss / running_num))
if (batch_idx + 1) % 100 == 0:
running_num = 0
running_loss = np.zeros(3)
del x, c, log_p, logdet, loss
del running_loss
gc.collect()
print('{}/{}/{} Training Loss : {:.4f}'.format(epoch, global_step, args.local_rank, epoch_loss / (len(train_loader))))
return epoch_loss / len(train_loader)
def evaluate(model):
model.eval()
running_loss = [0., 0., 0.]
epoch_loss = 0.
display_step = 100
for batch_idx, (x, c) in enumerate(test_loader):
x, c = x.to(device), c.to(device)
log_p, logdet = model(x, c)
log_p, logdet = torch.mean(log_p), torch.mean(logdet)
loss = -(log_p + logdet)
running_loss[0] += loss.item() / display_step
running_loss[1] += log_p.item() / display_step
running_loss[2] += logdet.item() / display_step
epoch_loss += loss.item()
if (batch_idx + 1) % 100 == 0:
print('Global Step : {}, [{}, {}] [Log pdf, Log p(z), Log Det] : {}'
.format(global_step, epoch, batch_idx + 1, np.array(running_loss)))
running_loss = [0., 0., 0.]
del x, c, log_p, logdet, loss
del running_loss
epoch_loss /= len(test_loader)
print('Evaluation Loss : {:.4f}'.format(epoch_loss))
return epoch_loss
def synthesize(model):
global global_step
model.eval()
for batch_idx, (x, c) in enumerate(synth_loader):
if batch_idx == 0:
x, c = x.to(device), c.to(device)
q_0 = Normal(x.new_zeros(x.size()), x.new_ones(x.size()))
z = q_0.sample()
start_time = time.time()
with torch.no_grad():
y_gen = model.module.reverse(z, c).squeeze()
wav = y_gen.to(torch.device("cpu")).data.numpy()
wav_name = '{}/{}/generate_{}_{}.wav'.format(args.sample_path, args.model_name, global_step, batch_idx)
print('{} seconds'.format(time.time() - start_time))
librosa.output.write_wav(wav_name, wav, sr=22050)
print('{} Saved!'.format(wav_name))
del x, c, z, q_0, y_gen, wav
def save_checkpoint(model, optimizer, scheduler, global_step, global_epoch):
checkpoint_path = os.path.join(args.save, args.model_name, "checkpoint_step{:09d}.pth".format(global_step))
optimizer_state = optimizer.state_dict()
scheduler_state = scheduler.state_dict()
torch.save({"state_dict": model.state_dict(),
"optimizer": optimizer_state,
"scheduler": scheduler_state,
"global_step": global_step,
"global_epoch": global_epoch}, checkpoint_path)
def load_checkpoint(step, model, optimizer, scheduler):
global global_step
global global_epoch
checkpoint_path = os.path.join(args.save, args.model_name, "checkpoint_step{:09d}.pth".format(step))
print("Rank {} load checkpoint from: {}".format(args.local_rank, checkpoint_path))
checkpoint = torch.load(checkpoint_path)
# generalized load procedure for both single-gpu and DataParallel models
# https://discuss.pytorch.org/t/solved-keyerror-unexpected-key-module-encoder-embedding-weight-in-state-dict/1686/3
try:
model.load_state_dict(checkpoint["state_dict"])
except RuntimeError:
print("INFO: this model is trained with DataParallel. Creating new state_dict without module...")
state_dict = checkpoint["state_dict"]
from collections import OrderedDict
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
model.load_state_dict(new_state_dict)
optimizer.load_state_dict(checkpoint["optimizer"])
scheduler.load_state_dict(checkpoint["scheduler"])
global_step = checkpoint["global_step"]
global_epoch = checkpoint["global_epoch"]
return model, optimizer, scheduler
if __name__ == "__main__":
model = build_model()
model.to(device)
optimizer = optim.Adam(model.parameters(), lr=args.learning_rate)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=200000 // world_size, gamma=0.5)
pretrained = True if args.load_step > 0 else False
if pretrained is False:
# do ActNorm initialization first (if model.pretrained is True, this does nothing so no worries)
x_seed, c_seed = next(iter(train_loader))
x_seed, c_seed = x_seed.to(device), c_seed.to(device)
with torch.no_grad():
_, _ = model(x_seed, c_seed)
del x_seed, c_seed, _
# then convert the model to DataParallel later (since ActNorm init from the DataParallel is wacky)
model, optimizer = amp.initialize(model, optimizer, opt_level="O0")
model = DistributedDataParallel(model)
global_step = 0
global_epoch = 0
if args.load_step == 0:
list_train_loss, list_loss = [], []
test_loss = 100.0
else:
model, optimizer, scheduler = load_checkpoint(args.load_step, model, optimizer, scheduler)
list_train_loss = np.load('{}/{}_train.npy'.format(args.loss, args.model_name)).tolist()
list_loss = np.load('{}/{}.npy'.format(args.loss, args.model_name)).tolist()
list_train_loss = list_train_loss[:global_epoch]
list_loss = list_loss[:global_epoch]
test_loss = np.min(list_loss)
for epoch in range(global_epoch + 1, args.epochs + 1):
training_epoch_loss = train(epoch, model, optimizer, scheduler)
if args.local_rank > 0:
gc.collect()
continue
with torch.no_grad():
test_epoch_loss = evaluate(model)
if test_loss > test_epoch_loss:
test_loss = test_epoch_loss
save_checkpoint(model, optimizer, scheduler, global_step, epoch)
print('Epoch {} Model Saved! Loss : {:.4f}'.format(epoch, test_loss))
with torch.no_grad():
synthesize(model)
list_train_loss.append(training_epoch_loss)
list_loss.append(test_epoch_loss)
np.save('{}/{}_train.npy'.format(args.loss, args.model_name), list_train_loss)
np.save('{}/{}.npy'.format(args.loss, args.model_name), list_loss)
state = {k: v for k, v in args._get_kwargs()}
state['training_loss'] = training_epoch_loss
state['eval_loss'] = test_epoch_loss
state['epoch'] = epoch
with open(os.path.join(args.log, '%s.txt' % args.model_name), 'a') as log:
log.write('%s\n' % json.dumps(state))
gc.collect()