forked from jeffpar/pcjs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bus.js
1010 lines (940 loc) · 37.4 KB
/
bus.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/**
* @fileoverview Implements the PCx80 Bus component
* @author Jeff Parsons <Jeff@pcjs.org>
* @copyright © 2012-2024 Jeff Parsons
* @license MIT <https://www.pcjs.org/LICENSE.txt>
*
* This file is part of PCjs, a computer emulation software project at <https://www.pcjs.org>.
*/
import MemoryX80 from "./memory.js";
import MESSAGE from "./message.js";
import Component from "../../../modules/v2/component.js";
import State from "../../../modules/v2/state.js";
import StrLib from "../../../modules/v2/strlib.js";
import UsrLib from "../../../modules/v2/usrlib.js";
import { DEBUGGER, MAXDEBUG } from "./defines.js";
/**
* BusInfoX80 object definition (returned by scanMemory())
*
* @typedef {Object} BusInfoX80
* @property {number} cbTotal (total bytes allocated)
* @property {number} cBlocks (total Memory blocks allocated)
* @property {Array.<number>} aBlocks (array of allocated Memory block numbers)
*/
/**
* TODO: The Closure Compiler treats ES6 classes as 'struct' rather than 'dict' by default,
* which would force us to declare all class properties in the constructor, as well as prevent
* us from defining any named properties. So, for now, we mark all our classes as 'unrestricted'.
*
* @class BusX80
* @unrestricted
*/
export default class BusX80 extends Component {
static ERROR = {
ADD_MEM_INUSE: 1,
ADD_MEM_BADRANGE: 2,
SET_MEM_BADRANGE: 4,
REM_MEM_BADRANGE: 5
};
/**
* This defines the BlockInfo bit fields used by scanMemory() when it creates the aBlocks array.
*/
static BlockInfo = UsrLib.defineBitFields({num:20, count:8, btmod:1, type:3});
/**
* BusX80(cpu, dbg)
*
* The BusX80 component manages physical memory and I/O address spaces.
*
* The BusX80 component has no UI elements, so it does not require an init() handler,
* but it still inherits from the Component class and must be allocated like any
* other device component. It's currently allocated by the Computer's init() handler,
* which then calls the initBus() method of all the other components.
*
* For memory beyond the simple needs of the ROM and RAM components (ie, memory-mapped
* devices), the address space must still be allocated through the BusX80 component via
* addMemory(). If the component needs something more than simple read/write storage,
* it must provide a custom controller.
*
* All port (I/O) operations are defined by external handlers; they register with us,
* and we manage those registrations and provide support for I/O breakpoints, but the
* only default I/O behavior we provide is ignoring writes to any unregistered output
* ports and returning 0xff from any unregistered input ports.
*
* @this {BusX80}
* @param {Object} parmsBus
* @param {CPUStateX80} cpu
* @param {DebuggerX80} dbg
*/
constructor(parmsBus, cpu, dbg)
{
super("Bus", parmsBus);
this.cpu = cpu;
this.dbg = dbg;
this.nBusWidth = parmsBus['busWidth'] || 16;
/*
* Compute all BusX80 memory block parameters, based on the width of the bus. The entire
* address space is divided into blocks, using a block size that is (hopefully) appropriate to
* the bus width. The following table summarizes our simplistic calculations.
*
* Bus Width Block Shift Block Size
* --------- ----------- ----------
* 16 bits (64Kb address space): 10 1Kb (64 maximum blocks)
* 18 bits (256Kb address space): 11 2Kb (128 maximum blocks)
* 20 bits (1Mb address space): 12 4Kb (256 maximum blocks)
* 22 bits (4Mb address space): 13 8Kb (512 maximum blocks)
* 24 bits (16Mb address space): 14 16Kb (1K maximum blocks)
* 32 bits (4Gb address space); 15 32Kb (128K maximum blocks)
*
* The coarser block granularities (ie, 16Kb and 32Kb) may cause problems for certain RAM and/or ROM
* allocations that are contiguous but are allocated out of order, or that have different controller
* requirements. Your choices, for the moment, are either to ensure the allocations are performed in
* order, or to choose smaller nBlockShift values (at the expense of a generating a larger block array).
*/
this.addrTotal = Math.pow(2, this.nBusWidth);
this.nBusLimit = this.nBusMask = (this.addrTotal - 1) | 0;
this.nBlockShift = (this.nBusWidth >> 1) + 2;
if (this.nBlockShift < 10) this.nBlockShift = 10;
if (this.nBlockShift > 15) this.nBlockShift = 15;
this.nBlockSize = 1 << this.nBlockShift;
this.nBlockLen = this.nBlockSize >> 2;
this.nBlockLimit = this.nBlockSize - 1;
this.nBlockTotal = (this.addrTotal / this.nBlockSize) | 0;
this.nBlockMask = this.nBlockTotal - 1;
this.assert(this.nBlockMask <= BusX80.BlockInfo.num.mask);
/*
* Lists of I/O notification functions: aPortInputNotify and aPortOutputNotify are arrays, indexed by
* port, of sub-arrays which contain:
*
* [0]: registered function to call for every I/O access
*
* The registered function is called with the port address, and if the access was triggered by the CPU,
* the instruction pointer (IP) at the point of access.
*
* WARNING: Unlike the (old) read and write memory notification functions, these support only one
* pair of input/output functions per port. A more sophisticated architecture could support a list
* of chained functions across multiple components, but I doubt that will be necessary here.
*
* UPDATE: The Debugger now piggy-backs on these arrays to indicate ports for which it wants notification
* of I/O. In those cases, the registered component/function elements may or may not be set, but the
* following additional element will be set:
*
* [1]: true to break on I/O, false to ignore I/O
*
* The false case is important if fPortInputBreakAll and/or fPortOutputBreakAll is set, because it allows the
* Debugger to selectively ignore specific ports.
*/
this.aPortInputNotify = [];
this.aPortOutputNotify = [];
this.fPortInputBreakAll = this.fPortOutputBreakAll = false;
/*
* By default, all I/O ports are 1 byte wide; ports that are wider must add themselves to one or both of
* these lists, using addPortInputWidth() and/or addPortOutputWidth().
*/
this.aPortInputWidth = [];
this.aPortOutputWidth = [];
/*
* Allocate empty Memory blocks to span the entire physical address space.
*/
this.initMemory();
this.setReady();
}
/**
* initMemory()
*
* Allocate enough (empty) Memory blocks to span the entire physical address space.
*
* @this {BusX80}
*/
initMemory()
{
let block = new MemoryX80();
block.copyBreakpoints(this.dbg);
this.aMemBlocks = new Array(this.nBlockTotal);
for (let iBlock = 0; iBlock < this.nBlockTotal; iBlock++) {
this.aMemBlocks[iBlock] = block;
}
}
/**
* reset()
*
* @this {BusX80}
*/
reset()
{
}
/**
* powerUp(data, fRepower)
*
* We don't need a powerDown() handler, because for largely historical reasons, our state is saved by saveMemory(),
* which called by the CPU.
*
* However, we do need a powerUp() handler, because on resumable machines, the Computer's onReset() function calls
* everyone's powerUp() handler rather than their reset() handler.
*
* TODO: Perhaps Computer should be smarter: if there's no powerUp() handler, then fallback to the reset() handler.
* In that case, however, we'd either need to remove the powerUp() stub in Component, or detect the existence of the stub.
*
* @this {BusX80}
* @param {Object|null} data (always null because we supply no powerDown() handler)
* @param {boolean} [fRepower]
* @returns {boolean} true if successful, false if failure
*/
powerUp(data, fRepower)
{
if (!fRepower) this.reset();
return true;
}
/**
* addMemory(addr, size, type)
*
* Adds new Memory blocks to the specified address range. Any Memory blocks previously
* added to that range must first be removed via removeMemory(); otherwise, you'll get
* an allocation conflict error. This helps prevent address calculation errors, redundant
* allocations, etc.
*
* We've relaxed some of the original requirements (ie, that addresses must start at a
* block-granular address, or that sizes must be equal to exactly one or more blocks),
* because machines with large block sizes can make it impossible to load certain ROMs at
* their required addresses. Every allocation still allocates a whole number of blocks.
*
* Even so, BusX80 memory management does NOT provide a general-purpose heap. Most memory
* allocations occur during machine initialization and never change. In particular, there
* is NO support for removing partial-block allocations.
*
* Each Memory block keeps track of a start address (addr) and length (used), indicating
* the used space within the block; any free space that precedes or follows that used space
* can be allocated later, by simply extending the beginning or ending of the previously used
* space. However, any holes that might have existed between the original allocation and an
* extension are subsumed by the extension.
*
* @this {BusX80}
* @param {number} addr is the starting physical address of the request
* @param {number} size of the request, in bytes
* @param {number} type is one of the MemoryX80.TYPE constants
* @returns {boolean} true if successful, false if not
*/
addMemory(addr, size, type)
{
let addrNext = addr;
let sizeLeft = size;
let iBlock = addrNext >>> this.nBlockShift;
while (sizeLeft > 0 && iBlock < this.aMemBlocks.length) {
let block = this.aMemBlocks[iBlock];
let addrBlock = iBlock * this.nBlockSize;
let sizeBlock = this.nBlockSize - (addrNext - addrBlock);
if (sizeBlock > sizeLeft) sizeBlock = sizeLeft;
if (block && block.size) {
if (block.type == type) {
/*
* Where there is already a similar block with a non-zero size, we allow the allocation only if:
*
* 1) addrNext + sizeLeft <= block.addr (the request precedes the used portion of the current block), or
* 2) addrNext >= block.addr + block.used (the request follows the used portion of the current block)
*/
if (addrNext + sizeLeft <= block.addr) {
block.used += (block.addr - addrNext);
block.addr = addrNext;
return true;
}
if (addrNext >= block.addr + block.used) {
let sizeAvail = block.size - (addrNext - addrBlock);
if (sizeAvail > sizeLeft) sizeAvail = sizeLeft;
block.used = addrNext - block.addr + sizeAvail;
addrNext = addrBlock + this.nBlockSize;
sizeLeft -= sizeAvail;
iBlock++;
continue;
}
}
return this.reportError(BusX80.ERROR.ADD_MEM_INUSE, addrNext, sizeLeft);
}
let blockNew = new MemoryX80(addrNext, sizeBlock, this.nBlockSize, type);
blockNew.copyBreakpoints(this.dbg, block);
this.aMemBlocks[iBlock++] = blockNew;
addrNext = addrBlock + this.nBlockSize;
sizeLeft -= sizeBlock;
}
if (sizeLeft <= 0) {
this.printf(MESSAGE.STATUS, "%dKb %s at 0x%04X\n", Math.floor(size / 1024), MemoryX80.TYPE.NAMES[type], addr);
return true;
}
return this.reportError(BusX80.ERROR.ADD_MEM_BADRANGE, addr, size);
}
/**
* cleanMemory(addr, size)
*
* @this {BusX80}
* @param {number} addr
* @param {number} size
* @returns {boolean} true if all blocks were clean, false if dirty; all blocks are cleaned in the process
*/
cleanMemory(addr, size)
{
let fClean = true;
let iBlock = addr >>> this.nBlockShift;
let sizeBlock = this.nBlockSize - (addr & this.nBlockLimit);
while (size > 0 && iBlock < this.aMemBlocks.length) {
if (this.aMemBlocks[iBlock].fDirty) {
this.aMemBlocks[iBlock].fDirty = fClean = false;
this.aMemBlocks[iBlock].fDirtyEver = true;
}
size -= sizeBlock;
sizeBlock = this.nBlockSize;
iBlock++;
}
return fClean;
}
/**
* scanMemory(info, addr, size)
*
* Returns a BusInfoX80 object for the specified address range.
*
* @this {BusX80}
* @param {Object} [info] previous BusInfoX80, if any
* @param {number} [addr] starting address of range (0 if none provided)
* @param {number} [size] size of range, in bytes (up to end of address space if none provided)
* @returns {Object} updated info (or new info if no previous info provided)
*/
scanMemory(info, addr, size)
{
if (addr == null) addr = 0;
if (size == null) size = (this.addrTotal - addr) | 0;
if (info == null) info = {cbTotal: 0, cBlocks: 0, aBlocks: []};
let iBlock = addr >>> this.nBlockShift;
let iBlockMax = ((addr + size - 1) >>> this.nBlockShift);
info.cbTotal = 0;
info.cBlocks = 0;
while (iBlock <= iBlockMax) {
let block = this.aMemBlocks[iBlock];
info.cbTotal += block.size;
if (block.size) {
info.aBlocks.push(UsrLib.initBitFields(/** @type {BitFields} */ (BusX80.BlockInfo), iBlock, 0, 0, block.type));
info.cBlocks++;
}
iBlock++;
}
return info;
}
/**
* getWidth()
*
* @this {BusX80}
* @returns {number}
*/
getWidth()
{
return this.nBusWidth;
}
/**
* removeMemory(addr, size)
*
* Replaces every block in the specified address range with empty Memory blocks that ignore all reads/writes.
*
* TODO: Update the removeMemory() interface to reflect the relaxed requirements of the addMemory() interface.
*
* @this {BusX80}
* @param {number} addr
* @param {number} size
* @returns {boolean} true if successful, false if not
*/
removeMemory(addr, size)
{
if (!(addr & this.nBlockLimit) && size && !(size & this.nBlockLimit)) {
let iBlock = addr >>> this.nBlockShift;
while (size > 0) {
let blockOld = this.aMemBlocks[iBlock];
let blockNew = new MemoryX80(addr);
blockNew.copyBreakpoints(this.dbg, blockOld);
this.aMemBlocks[iBlock++] = blockNew;
addr = iBlock * this.nBlockSize;
size -= this.nBlockSize;
}
return true;
}
return this.reportError(BusX80.ERROR.REM_MEM_BADRANGE, addr, size);
}
/**
* getMemoryBlocks(addr, size)
*
* @this {BusX80}
* @param {number} addr is the starting physical address
* @param {number} size of the request, in bytes
* @returns {Array} of Memory blocks
*/
getMemoryBlocks(addr, size)
{
let aBlocks = [];
let iBlock = addr >>> this.nBlockShift;
while (size > 0 && iBlock < this.aMemBlocks.length) {
aBlocks.push(this.aMemBlocks[iBlock++]);
size -= this.nBlockSize;
}
return aBlocks;
}
/**
* setMemoryBlocks(addr, size, aBlocks, type)
*
* If no type is specified, then specified address range uses all the provided blocks as-is;
* this form of setMemoryBlocks() is used for complete physical aliases.
*
* Otherwise, new blocks are allocated with the specified type; the underlying memory from the
* provided blocks is still used, but the new blocks may have different access to that memory.
*
* @this {BusX80}
* @param {number} addr is the starting physical address
* @param {number} size of the request, in bytes
* @param {Array} aBlocks as returned by getMemoryBlocks()
* @param {number} [type] is one of the MemoryX80.TYPE constants
*/
setMemoryBlocks(addr, size, aBlocks, type)
{
let i = 0;
let iBlock = addr >>> this.nBlockShift;
while (size > 0 && iBlock < this.aMemBlocks.length) {
let block = aBlocks[i++];
this.assert(block);
if (!block) break;
if (type !== undefined) {
let blockNew = new MemoryX80(addr);
blockNew.clone(block, type, this.dbg);
block = blockNew;
}
this.aMemBlocks[iBlock++] = block;
size -= this.nBlockSize;
}
}
/**
* getByte(addr)
*
* @this {BusX80}
* @param {number} addr is a physical address
* @returns {number} byte (8-bit) value at that address
*/
getByte(addr)
{
return this.aMemBlocks[(addr & this.nBusMask) >>> this.nBlockShift].readByte(addr & this.nBlockLimit, addr);
}
/**
* getByteDirect(addr)
*
* This is useful for the Debugger and other components that want to bypass getByte() breakpoint detection.
*
* @this {BusX80}
* @param {number} addr is a physical address
* @returns {number} byte (8-bit) value at that address
*/
getByteDirect(addr)
{
return this.aMemBlocks[(addr & this.nBusMask) >>> this.nBlockShift].readByteDirect(addr & this.nBlockLimit, addr);
}
/**
* getShort(addr)
*
* @this {BusX80}
* @param {number} addr is a physical address
* @returns {number} word (16-bit) value at that address
*/
getShort(addr)
{
let off = addr & this.nBlockLimit;
let iBlock = (addr & this.nBusMask) >>> this.nBlockShift;
if (off != this.nBlockLimit) {
return this.aMemBlocks[iBlock].readShort(off, addr);
}
return this.aMemBlocks[iBlock++].readByte(off, addr) | (this.aMemBlocks[iBlock & this.nBlockMask].readByte(0, addr + 1) << 8);
}
/**
* getShortDirect(addr)
*
* This is useful for the Debugger and other components that want to bypass getShort() breakpoint detection.
*
* @this {BusX80}
* @param {number} addr is a physical address
* @returns {number} word (16-bit) value at that address
*/
getShortDirect(addr)
{
let off = addr & this.nBlockLimit;
let iBlock = (addr & this.nBusMask) >>> this.nBlockShift;
if (off != this.nBlockLimit) {
return this.aMemBlocks[iBlock].readShortDirect(off, addr);
}
return this.aMemBlocks[iBlock++].readByteDirect(off, addr) | (this.aMemBlocks[iBlock & this.nBlockMask].readByteDirect(0, addr + 1) << 8);
}
/**
* setByte(addr, b)
*
* @this {BusX80}
* @param {number} addr is a physical address
* @param {number} b is the byte (8-bit) value to write (we truncate it to 8 bits to be safe)
*/
setByte(addr, b)
{
this.aMemBlocks[(addr & this.nBusMask) >>> this.nBlockShift].writeByte(addr & this.nBlockLimit, b & 0xff, addr);
}
/**
* setByteDirect(addr, b)
*
* This is useful for the Debugger and other components that want to bypass breakpoint detection AND read-only
* memory protection (for example, this is an interface the ROM component could use to initialize ROM contents).
*
* @this {BusX80}
* @param {number} addr is a physical address
* @param {number} b is the byte (8-bit) value to write (we truncate it to 8 bits to be safe)
*/
setByteDirect(addr, b)
{
this.aMemBlocks[(addr & this.nBusMask) >>> this.nBlockShift].writeByteDirect(addr & this.nBlockLimit, b & 0xff, addr);
}
/**
* setShort(addr, w)
*
* @this {BusX80}
* @param {number} addr is a physical address
* @param {number} w is the word (16-bit) value to write (we truncate it to 16 bits to be safe)
*/
setShort(addr, w)
{
let off = addr & this.nBlockLimit;
let iBlock = (addr & this.nBusMask) >>> this.nBlockShift;
if (off != this.nBlockLimit) {
this.aMemBlocks[iBlock].writeShort(off, w & 0xffff, addr);
return;
}
this.aMemBlocks[iBlock++].writeByte(off, w & 0xff, addr);
this.aMemBlocks[iBlock & this.nBlockMask].writeByte(0, (w >> 8) & 0xff, addr + 1);
}
/**
* setShortDirect(addr, w)
*
* This is useful for the Debugger and other components that want to bypass breakpoint detection AND read-only
* memory protection (for example, this is an interface the ROM component could use to initialize ROM contents).
*
* @this {BusX80}
* @param {number} addr is a physical address
* @param {number} w is the word (16-bit) value to write (we truncate it to 16 bits to be safe)
*/
setShortDirect(addr, w)
{
let off = addr & this.nBlockLimit;
let iBlock = (addr & this.nBusMask) >>> this.nBlockShift;
if (off != this.nBlockLimit) {
this.aMemBlocks[iBlock].writeShortDirect(off, w & 0xffff, addr);
return;
}
this.aMemBlocks[iBlock++].writeByteDirect(off, w & 0xff, addr);
this.aMemBlocks[iBlock & this.nBlockMask].writeByteDirect(0, (w >> 8) & 0xff, addr + 1);
}
/**
* addMemBreak(addr, fWrite)
*
* @this {BusX80}
* @param {number} addr
* @param {boolean} fWrite is true for a memory write breakpoint, false for a memory read breakpoint
*/
addMemBreak(addr, fWrite)
{
if (DEBUGGER) {
let iBlock = addr >>> this.nBlockShift;
this.aMemBlocks[iBlock].addBreakpoint(addr & this.nBlockLimit, fWrite);
}
}
/**
* removeMemBreak(addr, fWrite)
*
* @this {BusX80}
* @param {number} addr
* @param {boolean} fWrite is true for a memory write breakpoint, false for a memory read breakpoint
*/
removeMemBreak(addr, fWrite)
{
if (DEBUGGER) {
let iBlock = addr >>> this.nBlockShift;
this.aMemBlocks[iBlock].removeBreakpoint(addr & this.nBlockLimit, fWrite);
}
}
/**
* saveMemory(fAll)
*
* The only memory blocks we save are those marked as dirty, but most likely all of RAM will have been marked dirty,
* and even if our dirty-memory flags were as smart as our dirty-sector flags (ie, were set only when a write changed
* what was already there), it's unlikely that would reduce the number of RAM blocks we must save/restore. At least
* all the ROM blocks should be clean (except in the unlikely event that the Debugger was used to modify them).
*
* All dirty blocks will be stored in a single array, as pairs of block numbers and data arrays, like so:
*
* [iBlock0, [dw0, dw1, ...], iBlock1, [dw0, dw1, ...], ...]
*
* In a normal 4Kb block, there will be 1K DWORD values in the data array. Remember that each DWORD is a signed 32-bit
* integer (because they are formed using bitwise operator rather than floating-point math operators), so don't be
* surprised to see negative numbers in the data.
*
* The above example assumes "uncompressed" data arrays. If we choose to use "compressed" data arrays, the data arrays
* will look like:
*
* [count0, dw0, count1, dw1, ...]
*
* where each count indicates how many times the following DWORD value occurs. A data array length less than 1K indicates
* that it's compressed, since we'll only store them in compressed form if they actually shrank, and we'll use State
* helper methods compress() and decompress() to create and expand the compressed data arrays.
*
* @this {BusX80}
* @param {boolean} [fAll] (true to save all non-ROM memory blocks, regardless of their dirty flags)
* @returns {Array} a
*/
saveMemory(fAll)
{
let i = 0;
let a = [];
for (let iBlock = 0; iBlock < this.nBlockTotal; iBlock++) {
let block = this.aMemBlocks[iBlock];
/*
* We have to check both fDirty and fDirtyEver, because we may have called cleanMemory() on some of
* the memory blocks (eg, video memory), and while cleanMemory() will clear a dirty block's fDirty flag,
* it also sets the dirty block's fDirtyEver flag, which is left set for the lifetime of the machine.
*/
if (fAll && block.type != MemoryX80.TYPE.ROM || block.fDirty || block.fDirtyEver) {
a[i++] = iBlock;
a[i++] = State.compress(block.save());
}
}
return a;
}
/**
* restoreMemory(a)
*
* This restores the contents of all Memory blocks; called by CPUState.restore().
*
* In theory, we ONLY have to save/restore block contents. Other block attributes,
* like the type, the memory controller (if any), and the active memory access functions,
* should already be restored, since every component (re)allocates all the memory blocks
* it was using when it's restored. And since the CPU is guaranteed to be the last
* component to be restored, all those blocks (and their attributes) should be in place now.
*
* See saveMemory() for more information on how the memory block contents are saved.
*
* @this {BusX80}
* @param {Array} a
* @returns {boolean} true if successful, false if not
*/
restoreMemory(a)
{
for (let i = 0; i < a.length - 1; i += 2) {
let iBlock = a[i];
let adw = a[i+1];
if (adw && adw.length < this.nBlockLen) {
adw = State.decompress(adw, this.nBlockLen);
}
let block = this.aMemBlocks[iBlock];
if (!block || !block.restore(adw)) {
/*
* Either the block to restore hasn't been allocated, indicating a change in the machine
* configuration since it was last saved (the most likely explanation) or there's some internal
* inconsistency (eg, the block size is wrong).
*/
Component.error("Unable to restore memory block " + iBlock);
return false;
}
}
return true;
}
/**
* addPortInputBreak(port)
*
* @this {BusX80}
* @param {number} [port]
* @returns {boolean} true if break on port input enabled, false if disabled
*/
addPortInputBreak(port)
{
if (port === undefined) {
this.fPortInputBreakAll = !this.fPortInputBreakAll;
return this.fPortInputBreakAll;
}
if (this.aPortInputNotify[port] === undefined) {
this.aPortInputNotify[port] = [null, false];
}
this.aPortInputNotify[port][1] = !this.aPortInputNotify[port][1];
return this.aPortInputNotify[port][1];
}
/**
* addPortInputNotify(start, end, fn)
*
* Add a port input-notification handler to the list of such handlers.
*
* @this {BusX80}
* @param {number} start port address
* @param {number} end port address
* @param {function(number,number)} fn is called with the port and IP values at the time of the input
*/
addPortInputNotify(start, end, fn)
{
if (fn !== undefined) {
for (let port = start; port <= end; port++) {
if (this.aPortInputNotify[port] !== undefined) {
Component.warning("Input port " + StrLib.toHexWord(port) + " already registered");
continue;
}
this.aPortInputNotify[port] = [fn, false];
if (MAXDEBUG) this.printf(MESSAGE.LOG, "addPortInputNotify(%#06x)\n", port);
}
}
}
/**
* addPortInputTable(component, table, offset)
*
* Add port input-notification handlers from the specified table (a batch version of addPortInputNotify)
*
* @this {BusX80}
* @param {Component} component
* @param {Object} table
* @param {number} [offset] is an optional port offset
*/
addPortInputTable(component, table, offset)
{
if (offset === undefined) offset = 0;
if (table) {
for (let port in table) {
this.addPortInputNotify(+port + offset, +port + offset, table[port].bind(component));
}
}
}
/**
* addPortInputWidth(port, size)
*
* By default, all input ports are 1 byte wide; ports that are wider must call this function.
*
* @this {BusX80}
* @param {number} port
* @param {number} size (1, 2 or 4)
*/
addPortInputWidth(port, size)
{
this.aPortInputWidth[port] = size;
}
/**
* checkPortInputNotify(port, size, addrIP)
*
* @this {BusX80}
* @param {number} port
* @param {number} size (1, 2 or 4)
* @param {number} [addrIP] is the IP value at the time of the input
* @returns {number} simulated port data
*
* NOTE: It seems that parts of the ROM BIOS (like the RS-232 probes around F000:E5D7 in the 5150 BIOS)
* assume that ports for non-existent hardware return 0xff rather than 0x00, hence my new default (0xff) below.
*/
checkPortInputNotify(port, size, addrIP)
{
let data = 0, shift = 0;
while (size > 0) {
let aNotify = this.aPortInputNotify[port];
let sizePort = this.aPortInputWidth[port] || 1;
let maskPort = (sizePort == 1? 0xff : (sizePort == 2? 0xffff : -1));
let dataPort = maskPort;
/*
* TODO: We need to decide what to do about 8-bit I/O to a 16-bit port (ditto for 16-bit I/O
* to a 32-bit port). We probably should pass the size through to the aNotify[0] handler,
* and let it decide what to do, but I don't feel like changing all the I/O handlers right now.
* The good news, at least, is that the 8-bit handlers would not have to do anything special.
* This assert will warn us if this is a pressing need.
*/
this.assert(size >= sizePort);
if (aNotify !== undefined) {
if (aNotify[0]) {
dataPort = aNotify[0](port, addrIP);
if (dataPort === undefined) {
dataPort = maskPort;
} else {
dataPort &= maskPort;
}
}
if (DEBUGGER && this.dbg && this.fPortInputBreakAll != aNotify[1]) {
this.dbg.checkPortInput(port, size, dataPort);
}
}
else {
if (DEBUGGER && this.dbg) {
this.dbg.messageIO(this, port, null, addrIP);
if (this.fPortInputBreakAll) this.dbg.checkPortInput(port, size, dataPort);
}
}
data |= dataPort << shift;
shift += (sizePort << 3);
port += sizePort;
size -= sizePort;
}
this.assert(!size);
return data;
}
/**
* addPortOutputBreak(port)
*
* @this {BusX80}
* @param {number} [port]
* @returns {boolean} true if break on port output enabled, false if disabled
*/
addPortOutputBreak(port)
{
if (port === undefined) {
this.fPortOutputBreakAll = !this.fPortOutputBreakAll;
return this.fPortOutputBreakAll;
}
if (this.aPortOutputNotify[port] === undefined) {
this.aPortOutputNotify[port] = [null, false];
}
this.aPortOutputNotify[port][1] = !this.aPortOutputNotify[port][1];
return this.aPortOutputNotify[port][1];
}
/**
* addPortOutputNotify(start, end, fn)
*
* Add a port output-notification handler to the list of such handlers.
*
* @this {BusX80}
* @param {number} start port address
* @param {number} end port address
* @param {function(number,number)} fn is called with the port and IP values at the time of the output
*/
addPortOutputNotify(start, end, fn)
{
if (fn !== undefined) {
for (let port = start; port <= end; port++) {
if (this.aPortOutputNotify[port] !== undefined) {
Component.warning("Output port " + StrLib.toHexWord(port) + " already registered");
continue;
}
this.aPortOutputNotify[port] = [fn, false];
if (MAXDEBUG) this.printf(MESSAGE.LOG, "addPortOutputNotify(%#06x)\n", port);
}
}
}
/**
* addPortOutputTable(component, table, offset)
*
* Add port output-notification handlers from the specified table (a batch version of addPortOutputNotify)
*
* @this {BusX80}
* @param {Component} component
* @param {Object} table
* @param {number} [offset] is an optional port offset
*/
addPortOutputTable(component, table, offset)
{
if (offset === undefined) offset = 0;
if (table) {
for (let port in table) {
this.addPortOutputNotify(+port + offset, +port + offset, table[port].bind(component));
}
}
}
/**
* addPortOutputWidth(port, size)
*
* By default, all output ports are 1 byte wide; ports that are wider must call this function.
*
* @this {BusX80}
* @param {number} port
* @param {number} size (1, 2 or 4)
*/
addPortOutputWidth(port, size)
{
this.aPortOutputWidth[port] = size;
}
/**
* checkPortOutputNotify(port, size, data, addrIP)
*
* @this {BusX80}
* @param {number} port
* @param {number} size
* @param {number} data
* @param {number} [addrIP] is the IP value at the time of the output
*/
checkPortOutputNotify(port, size, data, addrIP)
{
let shift = 0;
while (size > 0) {
let aNotify = this.aPortOutputNotify[port];
let sizePort = this.aPortOutputWidth[port] || 1;
let maskPort = (sizePort == 1? 0xff : (sizePort == 2? 0xffff : -1));
let dataPort = (data >>>= shift) & maskPort;
/*
* TODO: We need to decide what to do about 8-bit I/O to a 16-bit port (ditto for 16-bit I/O
* to a 32-bit port). We probably should pass the size through to the aNotify[0] handler,
* and let it decide what to do, but I don't feel like changing all the I/O handlers right now.
* The good news, at least, is that the 8-bit handlers would not have to do anything special.
* This assert will warn us if this is a pressing need.
*/
this.assert(size >= sizePort);
if (aNotify !== undefined) {
if (aNotify[0]) {
aNotify[0](port, dataPort, addrIP);
}
if (DEBUGGER && this.dbg && this.fPortOutputBreakAll != aNotify[1]) {
this.dbg.checkPortOutput(port, size, dataPort);
}
}
else {
if (DEBUGGER && this.dbg) {
this.dbg.messageIO(this, port, dataPort, addrIP);
if (this.fPortOutputBreakAll) this.dbg.checkPortOutput(port, size, dataPort);
}
}
shift += (sizePort << 3);
port += sizePort;
size -= sizePort;
}
this.assert(!size);
}
/**
* removePortInputNotify(start, end)
*
* Remove port input-notification handler(s) (to be ENABLED later if needed)
*
* @this {BusX80}
* @param {number} start address
* @param {number} end address
*
removePortInputNotify(start, end)
{
for (let port = start; port < end; port++) {
if (this.aPortInputNotify[port]) {
delete this.aPortInputNotify[port];
}
}
}
*/
/**
* removePortOutputNotify(start, end)
*
* Remove port output-notification handler(s) (to be ENABLED later if needed)
*
* @this {BusX80}
* @param {number} start address
* @param {number} end address
*
removePortOutputNotify(start, end)
{
for (let port = start; port < end; port++) {
if (this.aPortOutputNotify[port]) {
delete this.aPortOutputNotify[port];
}
}
}
*/
/**
* reportError(op, addr, size, fQuiet)
*
* @this {BusX80}
* @param {number} op
* @param {number} addr