forked from jeffpar/pcjs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cpu.js
1257 lines (1172 loc) · 46.1 KB
/
cpu.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/**
* @fileoverview Controls the PCx80 CPU component
* @author Jeff Parsons <Jeff@pcjs.org>
* @copyright © 2012-2024 Jeff Parsons
* @license MIT <https://www.pcjs.org/LICENSE.txt>
*
* This file is part of PCjs, a computer emulation software project at <https://www.pcjs.org>.
*/
import MESSAGE from "./message.js";
import Component from "../../../modules/v2/component.js";
import StrLib from "../../../modules/v2/strlib.js";
import { DEBUG, DEBUGGER, MAXDEBUG } from "./defines.js";
/**
* TODO: The Closure Compiler treats ES6 classes as 'struct' rather than 'dict' by default,
* which would force us to declare all class properties in the constructor, as well as prevent
* us from defining any named properties. So, for now, we mark all our classes as 'unrestricted'.
*
* @class CPUx80
* @unrestricted
*/
export default class CPUx80 extends Component {
/**
* CPUx80(parmsCPU, nCyclesDefault)
*
* The CPUx80 class supports the following (parmsCPU) properties:
*
* cycles: the machine's base cycles per second; the CPUStateX80 constructor
* will provide us with a default (based on the CPU model) to use as a fallback.
*
* multiplier: base cycle multiplier; default is 1.
*
* autoStart: true to automatically start, false to not, or null if "it depends";
* null is the default, which means do not autostart UNLESS there is no Debugger
* and no "Run" button (ie, no way to manually start the machine).
*
* csStart: the number of cycles that runCPU() must wait before generating
* checksum records; -1 if disabled. checksum records are a diagnostic aid
* used to help compare one CPU run to another.
*
* csInterval: the number of cycles that runCPU() must execute before generating
* a checksum record; -1 if disabled.
*
* csStop: the number of cycles to stop generating checksum records.
*
* This component is primarily responsible for interfacing the CPU with the outside
* world (eg, Panel and Debugger components), and managing overall CPU operation.
*
* It is extended by the CPUStateX80 component, where the simulation control logic resides.
*
* @this {CPUx80}
* @param {Object} parmsCPU
* @param {number} nCyclesDefault
*/
constructor(parmsCPU, nCyclesDefault)
{
super("CPU", parmsCPU, MESSAGE.CPU);
let nCycles = parmsCPU['cycles'] || nCyclesDefault;
let nMultiplier = parmsCPU['multiplier'] || 1;
this.nCyclesPerSecond = nCycles;
/*
* nCyclesMultiplier replaces the old "speed" variable (0, 1, 2) and eliminates the need for
* the constants (SPEED_SLOW, SPEED_FAST and SPEED_MAX). The UI simply doubles the multiplier
* until we've exceeded the host's speed limit and then starts the multiplier over at 1.
*/
this.nCyclesMultiplier = nMultiplier;
this.mhzDefault = Math.round(this.nCyclesPerSecond / 10000) / 100;
/*
* TODO: Take care of this with an initial setSpeed() call instead?
*/
this.mhzTarget = this.mhzDefault * this.nCyclesMultiplier;
/*
* We add a number of flags to the set initialized by Component
*/
this.flags.running = false;
this.flags.starting = false;
this.flags.autoStart = parmsCPU['autoStart'];
/*
* TODO: Add some UI for fDisplayLiveRegs (either an XML property, or a UI checkbox, or both)
*/
this.flags.displayLiveRegs = false;
/*
* Get checksum parameters, if any. runCPU() behavior is not affected until fChecksum
* is true, which won't happen until resetChecksum() is called with nCyclesChecksumInterval
* ("csInterval") set to a positive value.
*
* As above, any of these parameters can also be set with the Debugger's execution options
* command ("x"); for example, "x cs int 5000" will set nCyclesChecksumInterval to 5000
* and call resetChecksum().
*/
this.flags.checksum = false;
this.nChecksum = this.nCyclesChecksumNext = 0;
this.nCyclesChecksumStart = parmsCPU["csStart"];
this.nCyclesChecksumInterval = parmsCPU["csInterval"];
this.nCyclesChecksumStop = parmsCPU["csStop"];
/*
* Array of countdown timers managed by addTimer() and setTimer().
*/
this.aTimers = [];
this.onRunTimeout = this.runCPU.bind(this); // function onRunTimeout() { cpu.runCPU(); };
this.setReady();
}
/**
* initBus(cmp, bus, cpu, dbg)
*
* @this {CPUx80}
* @param {ComputerX80} cmp
* @param {BusX80} bus
* @param {CPUx80} cpu
* @param {DebuggerX80} dbg
*/
initBus(cmp, bus, cpu, dbg)
{
this.cmp = cmp;
this.bus = bus;
this.dbg = dbg;
for (let i = 0; i < CPUx80.BUTTONS.length; i++) {
let control = this.bindings[CPUx80.BUTTONS[i]];
if (control) this.cmp.setBinding("", CPUx80.BUTTONS[i], control);
}
/*
* Attach the ChipSet component to the CPU so that it can be notified whenever the CPU stops and starts.
*/
this.chipset = /** @type {ChipSetX80} */ (cmp.getMachineComponent("ChipSet"));
/*
* We've already saved the parmsCPU 'autoStart' setting, but there may be a machine (or URL) override.
*/
let sAutoStart = cmp.getMachineParm('autoStart');
if (sAutoStart != null) {
this.flags.autoStart = (sAutoStart == "true"? true : (sAutoStart == "false"? false : !!sAutoStart));
}
this.setReady();
}
/**
* reset()
*
* @this {CPUx80}
*/
reset()
{
}
/**
* save()
*
* This is a placeholder for save support (overridden by the CPUStateX80 component).
*
* @this {CPUx80}
* @returns {Object|null}
*/
save()
{
return null;
}
/**
* restore(data)
*
* This is a placeholder for restore support (overridden by the CPUStateX80 component).
*
* @this {CPUx80}
* @param {Object} data
* @returns {boolean} true if restore successful, false if not
*/
restore(data)
{
return false;
}
/**
* powerUp(data, fRepower)
*
* @this {CPUx80}
* @param {Object|null} data
* @param {boolean} [fRepower]
* @returns {boolean} true if successful, false if failure
*/
powerUp(data, fRepower)
{
if (!fRepower) {
if (!data || !this.restore) {
this.reset();
} else {
this.resetCycles();
if (!this.restore(data)) return false;
this.resetChecksum();
}
/*
* Give the Debugger a chance to do/print something once we've powered up
*/
if (DEBUGGER && this.dbg) {
this.dbg.init();
} else {
this.printf("No debugger detected\n");
}
}
/*
* The Computer component (which is responsible for all powerDown and powerUp notifications)
* is now responsible for managing a component's fPowered flag, not us.
*
* this.flags.powered = true;
*/
this.updateCPU();
return true;
}
/**
* powerDown(fSave, fShutdown)
*
* @this {CPUx80}
* @param {boolean} [fSave]
* @param {boolean} [fShutdown]
* @returns {Object|boolean} component state if fSave; otherwise, true if successful, false if failure
*/
powerDown(fSave, fShutdown)
{
/*
* The Computer component (which is responsible for all powerDown and powerUp notifications)
* is now responsible for managing a component's fPowered flag, not us.
*
* this.flags.powered = false;
*/
return fSave? this.save() : true;
}
/**
* autoStart()
*
* @this {CPUx80}
* @returns {boolean} true if started, false if not
*/
autoStart()
{
/*
* Start running automatically on power-up, assuming there's no Debugger and no "Run" button
*/
if (this.flags.autoStart || (!DEBUGGER || !this.dbg) && this.bindings["run"] === undefined) {
/*
* We used to also set fUpdateFocus when calling runCPU(), on the assumption that in the "auto-starting"
* context, a machine without focus is like a day without sunshine, but in reality, focus should only be
* forced when the user takes some other machine-related action.
*/
this.runCPU();
return true;
}
return false;
}
/**
* isPowered()
*
* @this {CPUx80}
* @returns {boolean}
*/
isPowered()
{
if (!this.flags.powered) {
this.printf("%s not powered\n", this.toString());
return false;
}
return true;
}
/**
* isRunning()
*
* @this {CPUx80}
* @returns {boolean}
*/
isRunning()
{
return this.flags.running;
}
/**
* getChecksum()
*
* This will be implemented by the CPUStateX80 component.
*
* @this {CPUx80}
* @returns {number} a 32-bit summation of key elements of the current CPU state (used by the CPU checksum code)
*/
getChecksum()
{
return 0;
}
/**
* resetChecksum()
*
* If checksum generation is enabled (fChecksum is true), this resets the running 32-bit checksum and the
* cycle counter that will trigger the next displayChecksum(); called by resetCycles(), which is called whenever
* the CPU is reset or restored.
*
* @this {CPUx80}
* @returns {boolean} true if checksum generation enabled, false if not
*/
resetChecksum()
{
if (this.nCyclesChecksumStart === undefined) this.nCyclesChecksumStart = 0;
if (this.nCyclesChecksumInterval === undefined) this.nCyclesChecksumInterval = -1;
if (this.nCyclesChecksumStop === undefined) this.nCyclesChecksumStop = -1;
this.flags.checksum = (this.nCyclesChecksumStart >= 0 && this.nCyclesChecksumInterval > 0);
if (this.flags.checksum) {
this.nChecksum = 0;
this.nCyclesChecksumNext = this.nCyclesChecksumStart - this.nTotalCycles;
/*
* this.nCyclesChecksumNext = this.nCyclesChecksumStart + this.nCyclesChecksumInterval -
* (this.nTotalCycles % this.nCyclesChecksumInterval);
*/
return true;
}
return false;
}
/**
* updateChecksum(nCycles)
*
* When checksum generation is enabled (fChecksum is true), runCPU() asks stepCPU() to execute a minimum
* number of cycles (1), effectively limiting execution to a single instruction, and then we're called with
* the exact number cycles that were actually executed. This should give us instruction-granular checksums
* at precise intervals that are 100% repeatable.
*
* @this {CPUx80}
* @param {number} nCycles
*/
updateChecksum(nCycles)
{
if (this.flags.checksum) {
/*
* Get a 32-bit summation of the current CPU state and add it to our running 32-bit checksum
*/
let fDisplay = false;
this.nChecksum = (this.nChecksum + this.getChecksum())|0;
this.nCyclesChecksumNext -= nCycles;
if (this.nCyclesChecksumNext <= 0) {
this.nCyclesChecksumNext += this.nCyclesChecksumInterval;
fDisplay = true;
}
if (this.nCyclesChecksumStop >= 0) {
if (this.nCyclesChecksumStop <= this.getCycles()) {
this.nCyclesChecksumInterval = this.nCyclesChecksumStop = -1;
this.resetChecksum();
this.stopCPU();
fDisplay = true;
}
}
if (fDisplay) this.displayChecksum();
}
}
/**
* displayChecksum()
*
* When checksum generation is enabled (fChecksum is true), this is called to provide a crude log of all
* checksums generated at the specified cycle intervals, as specified by the "csStart" and "csInterval" parmsCPU
* properties).
*
* @this {CPUx80}
*/
displayChecksum()
{
this.printf("%d cycles: checksum=%x\n", this.getCycles(), this.nChecksum);
}
/**
* displayValue(sLabel, nValue, cch)
*
* This is principally for displaying register values, but in reality, it can be used to display any
* numeric (hex) value bound to the given label.
*
* @this {CPUx80}
* @param {string} sLabel
* @param {number} nValue
* @param {number} cch
*/
displayValue(sLabel, nValue, cch)
{
if (this.bindings[sLabel]) {
if (nValue === undefined) {
this.setError("Value for " + sLabel + " is invalid");
this.stopCPU();
}
let sVal;
if (!this.flags.running || this.flags.displayLiveRegs) {
sVal = StrLib.toHex(nValue, cch);
} else {
sVal = "--------".substr(0, cch);
}
/*
* TODO: Determine if this test actually avoids any redrawing when a register hasn't changed, and/or if
* we should maintain our own (numeric) cache of displayed register values (to avoid creating these temporary
* string values that will have to garbage-collected), and/or if this is actually slower, and/or if I'm being
* too obsessive.
*/
if (this.bindings[sLabel].textContent != sVal) this.bindings[sLabel].textContent = sVal;
}
}
/**
* setBinding(sHTMLType, sBinding, control, sValue)
*
* @this {CPUx80}
* @param {string} sHTMLType is the type of the HTML control (eg, "button", "list", "text", "submit", "textarea", "canvas")
* @param {string} sBinding is the value of the 'binding' parameter stored in the HTML control's "data-value" attribute (eg, "run")
* @param {HTMLElement} control is the HTML control DOM object (eg, HTMLButtonElement)
* @param {string} [sValue] optional data value
* @returns {boolean} true if binding was successful, false if unrecognized binding request
*/
setBinding(sHTMLType, sBinding, control, sValue)
{
let cpu = this;
let fBound = false;
switch (sBinding) {
case "power":
case "reset":
/*
* The "power" and "reset" buttons are functions of the entire computer, not just the CPU,
* but it's not always convenient to stick a power button in the Computer component definition,
* so we record those bindings here and pass them on to the Computer component in initBus().
*/
this.bindings[sBinding] = control;
fBound = true;
break;
case "run":
this.bindings[sBinding] = control;
control.onclick = function onClickRun() {
if (!cpu.cmp || !cpu.cmp.checkPower()) return;
/*
* We no longer pass true to these runCPU()/stopCPU() calls, on the theory that if the "run"
* control is visible, then the computer is probably sufficiently visible as well; the problem
* with setting fUpdateFocus to true is that it can jerk the web page around in annoying ways.
*/
if (!cpu.flags.running) {
cpu.runCPU();
} else {
cpu.stopCPU();
}
};
fBound = true;
break;
case "speed":
this.bindings[sBinding] = control;
fBound = true;
break;
case "setSpeed":
this.bindings[sBinding] = control;
control.onclick = function onClickSetSpeed() {
cpu.setSpeed(cpu.nCyclesMultiplier << 1, true);
};
control.textContent = this.getSpeedTarget();
fBound = true;
break;
default:
break;
}
return fBound;
}
/**
* setBurstCycles(nCycles)
*
* This function is used by the ChipSet component whenever a very low timer count is set,
* in anticipation of the timer requiring an update sooner than the normal nCyclesPerYield
* period in runCPU() would normally provide.
*
* NOTE: In this context, "timer" refers to a timer chip (eg, an Intel 8253) being emulated by
* by the ChipSet component, not the timers managed by the CPU (eg, addTimer(), setTimer(), etc).
*
* @this {CPUx80}
* @param {number} nCycles is the target number of cycles to drop the current burst to
* @returns {boolean}
*/
setBurstCycles(nCycles)
{
if (this.flags.running) {
let nDelta = this.nStepCycles - nCycles;
/*
* NOTE: If nDelta is negative, we will actually be increasing nStepCycles and nBurstCycles.
* Which is OK, but if we're also taking snapshots of the cycle counts, to make sure that instruction
* costs are being properly assessed, then we need to update nSnapCycles as well.
*
* TODO: If the delta is negative, we could simply ignore the request, but we must first carefully
* consider the impact on the ChipSet timers, if any.
*/
// if (DEBUG) this.nSnapCycles -= nDelta;
this.nStepCycles -= nDelta;
this.nBurstCycles -= nDelta;
return true;
}
return false;
}
/**
* addCycles(nCycles, fEndStep)
*
* @this {CPUx80}
* @param {number} nCycles
* @param {boolean} [fEndStep]
*/
addCycles(nCycles, fEndStep)
{
this.nTotalCycles += nCycles;
if (fEndStep) {
this.nBurstCycles = this.nStepCycles = 0;
}
}
/**
* calcCycles(fRecalc)
*
* Calculate the number of cycles to process for each "burst" of CPU activity. The size of a burst
* is driven by YIELDS_PER_SECOND (eg, 30).
*
* At the end of each burst, we subtract burst cycles from the yield cycle "threshold" counter.
* Whenever the "next yield" cycle counter goes to (or below) zero, we compare elapsed time to the time
* we expected the virtual hardware to take (eg, 1000ms/50 or 20ms), and if we still have time remaining,
* we sleep the remaining time (or 0ms if there's no remaining time), and then restart runCPU().
*
* @this {CPUx80}
* @param {boolean} [fRecalc] is true if the caller wants to recalculate thresholds based on the most recent
* speed calculation (see calcSpeed).
*/
calcCycles(fRecalc)
{
/*
* Calculate "per" yield values.
*/
let vMultiplier = 1;
if (fRecalc) {
if (this.nCyclesMultiplier > 1 && this.mhz) {
vMultiplier = (this.mhz / this.mhzDefault);
}
}
this.msPerYield = Math.round(1000 / CPUx80.YIELDS_PER_SECOND);
this.nCyclesPerYield = Math.floor(this.nCyclesPerSecond / CPUx80.YIELDS_PER_SECOND * vMultiplier);
/*
* And initialize "next" yield values to the "per" values.
*/
if (!fRecalc) {
this.nCyclesNextYield = this.nCyclesPerYield;
}
this.nCyclesRecalc = 0;
}
/**
* getCycles(fScaled)
*
* getCycles() returns the number of cycles executed so far. Note that we can be called after
* runCPU() OR during runCPU(), perhaps from a handler triggered during the current run's stepCPU(),
* so nRunCycles must always be adjusted by number of cycles stepCPU() was asked to run (nBurstCycles),
* less the number of cycles it has yet to run (nStepCycles).
*
* nRunCycles is zeroed whenever the CPU is halted or the CPU speed is changed, which is why we also
* have nTotalCycles, which accumulates all nRunCycles before we zero it. However, nRunCycles and
* nTotalCycles eventually get reset by calcSpeed(), to avoid overflow, so components that rely on
* getCycles() returning steadily increasing values should also be prepared for a reset at any time.
*
* @this {CPUx80}
* @param {boolean} [fScaled] is true if the caller wants a cycle count relative to a multiplier of 1
* @returns {number}
*/
getCycles(fScaled)
{
let nCycles = this.nTotalCycles + this.nRunCycles + this.nBurstCycles - this.nStepCycles;
if (fScaled && this.nCyclesMultiplier > 1 && this.mhz > this.mhzDefault) {
/*
* We could scale the current cycle count by the current effective speed (this.mhz); eg:
*
* nCycles = Math.round(nCycles / (this.mhz / this.mhzDefault));
*
* but that speed will fluctuate somewhat: large fluctuations at first, but increasingly smaller
* fluctuations after each burst of instructions that runCPU() executes.
*
* Alternatively, we can scale the cycle count by the multiplier, which is good in that the
* multiplier doesn't vary once the user changes it, but a potential downside is that the
* multiplier might be set too high, resulting in a target speed that's higher than the effective
* speed is able to reach.
*
* Also, if multipliers were always limited to a power-of-two, then this could be calculated
* with a simple shift. However, only the "setSpeed" UI binding limits it that way; the Debugger
* interface allows any value, as does the CPU "multiplier" parmsCPU property (from the machine's
* XML file).
*/
nCycles = Math.round(nCycles / this.nCyclesMultiplier);
}
return nCycles;
}
/**
* getCyclesPerSecond()
*
* This returns the CPU's "base" speed (ie, the original cycles per second defined for the machine)
*
* @this {CPUx80}
* @returns {number}
*/
getCyclesPerSecond()
{
return this.nCyclesPerSecond;
}
/**
* resetCycles()
*
* Resets speed and cycle information as part of any reset() or restore(); this typically occurs during powerUp().
* It's important that this be called BEFORE the actual restore() call, because restore() may want to call setSpeed(),
* which in turn assumes that all the cycle counts have been initialized to sensible values.
*
* @this {CPUx80}
*/
resetCycles()
{
this.mhz = 0;
this.nYieldsSinceStatusUpdate = 0;
this.nTotalCycles = this.nRunCycles = this.nBurstCycles = this.nStepCycles = 0;
this.resetChecksum();
this.setSpeed(1);
}
/**
* getSpeed()
*
* @this {CPUx80}
* @returns {number} the current speed multiplier
*/
getSpeed()
{
return this.nCyclesMultiplier;
}
/**
* getSpeedCurrent()
*
* @this {CPUx80}
* @returns {string} the current speed, in mhz, as a string formatted to two decimal places
*/
getSpeedCurrent()
{
/*
* TODO: Has toFixed() been "fixed" in all browsers (eg, IE) to return a rounded value now?
*/
return ((this.flags.running && this.mhz)? (this.mhz.toFixed(2) + "Mhz") : "Stopped");
}
/**
* getSpeedTarget()
*
* @this {CPUx80}
* @returns {string} the target speed, in mhz, as a string formatted to two decimal places
*/
getSpeedTarget()
{
/*
* TODO: Has toFixed() been "fixed" in all browsers (eg, IE) to return a rounded value now?
*/
return this.mhzTarget.toFixed(2) + "Mhz";
}
/**
* setSpeed(nMultiplier, fUpdateFocus)
*
* NOTE: This used to return the target speed, in mhz, but no callers appear to care at this point.
*
* @desc Whenever the speed is changed, the running cycle count and corresponding start time must be reset,
* so that the next effective speed calculation obtains sensible results. In fact, when runCPU() initially calls
* setSpeed() with no parameters, that's all this function does (it doesn't change the current speed setting).
*
* @this {CPUx80}
* @param {number} [nMultiplier] is the new proposed multiplier (reverts to 1 if the target was too high)
* @param {boolean} [fUpdateFocus] is true to update Computer focus
* @returns {boolean} true if successful, false if not
*/
setSpeed(nMultiplier, fUpdateFocus)
{
let fSuccess = false;
if (nMultiplier !== undefined) {
/*
* If we haven't reached 80% (0.8) of the current target speed, revert to a multiplier of one (1).
*/
if (this.mhz / this.mhzTarget < 0.8) {
nMultiplier = 1;
} else {
fSuccess = true;
}
this.nCyclesMultiplier = nMultiplier;
let mhz = this.mhzDefault * this.nCyclesMultiplier;
if (this.mhzTarget != mhz) {
this.mhzTarget = mhz;
let sSpeed = this.getSpeedTarget();
let controlSpeed = this.bindings["setSpeed"];
if (controlSpeed) controlSpeed.textContent = sSpeed;
this.printf("target speed: %s\n", sSpeed);
}
if (fUpdateFocus && this.cmp) this.cmp.updateFocus();
}
this.addCycles(this.nRunCycles);
this.nRunCycles = 0;
this.msStartRun = Component.getTime();
this.msEndThisRun = 0;
this.calcCycles();
return fSuccess;
}
/**
* calcSpeed(nCycles, msElapsed)
*
* @this {CPUx80}
* @param {number} nCycles
* @param {number} msElapsed
*/
calcSpeed(nCycles, msElapsed)
{
if (msElapsed) {
this.mhz = Math.round(nCycles / (msElapsed * 10)) / 100;
if (msElapsed >= 86400000) {
this.nTotalCycles = 0;
this.setSpeed(); // reset all counters once per day so that we never have to worry about overflow
}
}
}
/**
* calcStartTime()
*
* @this {CPUx80}
*/
calcStartTime()
{
if (this.nCyclesRecalc >= this.nCyclesPerSecond) {
this.calcCycles(true);
}
this.nCyclesThisRun = 0;
this.msStartThisRun = Component.getTime();
/*
* Try to detect situations where the browser may have throttled us, such as when the user switches
* to a different tab; in those situations, Chrome and Safari may restrict setTimeout() callbacks
* to roughly one per second.
*
* Another scenario: the user resizes the browser window. setTimeout() callbacks are not throttled,
* but there can still be enough of a lag between the callbacks that CPU speed will be noticeably
* erratic if we don't compensate for it here.
*
* We can detect throttling/lagging by verifying that msEndThisRun (which was set at the end of the
* previous run and includes any requested sleep time) is comparable to the current msStartThisRun;
* if the delta is significant, we compensate by bumping msStartRun forward by that delta.
*
* This shouldn't be triggered when the Debugger halts the CPU, because setSpeed() -- which is called
* whenever the CPU starts running again -- zeroes msEndThisRun.
*
* This also won't do anything about other internal delays; for example, Debugger message() calls.
* By the time the message() function has called yieldCPU(), the cost of the message has already been
* incurred, so it will be end up being charged against the instruction(s) that triggered it.
*
* TODO: Consider calling yieldCPU() sooner from message(), so that it can arrange for the msEndThisRun
* "snapshot" to occur sooner; it's unclear, however, whether that will really improve the CPU's ability
* to hit its target speed, since you would expect any instruction that displays a message to be an
* EXTREMELY slow instruction.
*/
if (this.msEndThisRun) {
let msDelta = this.msStartThisRun - this.msEndThisRun;
if (msDelta > this.msPerYield) {
if (MAXDEBUG) this.printf("large time delay: %dms\n", msDelta);
this.msStartRun += msDelta;
/*
* Bumping msStartRun forward should NEVER cause it to exceed msStartThisRun; however, just
* in case, I make absolutely sure it cannot happen, since doing so could result in negative
* speed calculations.
*/
this.assert(this.msStartRun <= this.msStartThisRun);
if (this.msStartRun > this.msStartThisRun) {
this.msStartRun = this.msStartThisRun;
}
}
}
}
/**
* calcRemainingTime()
*
* @this {CPUx80}
* @returns {number}
*/
calcRemainingTime()
{
this.msEndThisRun = Component.getTime();
let msYield = this.msPerYield;
if (this.nCyclesThisRun) {
/*
* Normally, we would assume we executed a full quota of work over msPerYield, but since the CPU
* now has the option of calling yieldCPU(), that might not be true. If nCyclesThisRun is correct, then
* the ratio of nCyclesThisRun/nCyclesPerYield should represent the percentage of work we performed,
* and so applying that percentage to msPerYield should give us a better estimate of work vs. time.
*/
msYield = Math.round(msYield * this.nCyclesThisRun / this.nCyclesPerYield);
}
let msElapsedThisRun = this.msEndThisRun - this.msStartThisRun;
let msRemainsThisRun = msYield - msElapsedThisRun;
/*
* We could pass only "this run" results to calcSpeed():
*
* nCycles = this.nCyclesThisRun;
* msElapsed = msElapsedThisRun;
*
* but it seems preferable to use longer time periods and hopefully get a more accurate speed.
*
* Also, if msRemainsThisRun >= 0 && this.nCyclesMultiplier == 1, we could pass these results instead:
*
* nCycles = this.nCyclesThisRun;
* msElapsed = this.msPerYield;
*
* to insure that we display a smooth, constant N Mhz. But for now, I prefer seeing any fluctuations.
*/
let nCycles = this.nRunCycles;
let msElapsed = this.msEndThisRun - this.msStartRun;
if (MAXDEBUG && msRemainsThisRun < 0 && this.nCyclesMultiplier > 1) {
this.printf("warning: updates @%dms (prefer %dms)\n", msElapsedThisRun, Math.round(msYield));
}
this.calcSpeed(nCycles, msElapsed);
if (msRemainsThisRun < 0 || this.mhz < this.mhzTarget) {
/*
* Try "throwing out" the effects of large anomalies, by moving the overall run start time up;
* ordinarily, this should only happen when the someone is using an external Debugger or some other
* tool or feature that is interfering with our overall execution.
*/
if (msRemainsThisRun < -1000) {
this.msStartRun -= msRemainsThisRun;
}
/*
* If the last burst took MORE time than we allotted (ie, it's taking more than 1 second to simulate
* nCyclesPerSecond), all we can do is yield for as little time as possible (ie, 0ms) and hope that the
* simulation is at least usable.
*/
msRemainsThisRun = 0;
}
/*
* Last but not least, update nCyclesRecalc, so that when runCPU() starts up again and calls calcStartTime(),
* it'll be ready to decide if calcCycles() should be called again.
*/
this.nCyclesRecalc += this.nCyclesThisRun;
if (DEBUG && this.messageEnabled(MESSAGE.CPU) && msRemainsThisRun) {
this.printf("calcRemainingTime: %dms to sleep after %dms\n", msRemainsThisRun, this.msEndThisRun);
}
this.msEndThisRun += msRemainsThisRun;
return msRemainsThisRun;
}
/**
* addTimer(id, callBack, ms)
*
* Components that want to have timers that fire after some number of milliseconds call addTimer() to create
* the timer, and then setTimer() when they want to arm it. Alternatively, they can specify an automatic timeout
* value (in milliseconds) to have the timer fire automatically at regular intervals. There is currently
* no removeTimer() because these are generally used for the entire lifetime of a component.
*
* Internally, each timer entry is a preallocated Array with the following entries:
*
* [0]: timer ID
* [1]: countdown value, in cycles
* [2]: automatic setTimer value, if any, in milliseconds
* [3]: callback function
*
* A timer is initially dormant; dormant timers have a countdown value of -1 (although any negative number
* will suffice) and active timers have a non-negative value.
*
* Why not use JavaScript's setTimeout() instead? Good question. For a good answer, see setTimer() below.
*
* @this {CPUx80}
* @param {string} id
* @param {function()} callBack
* @param {number} [ms] (if set, enables automatic setTimer calls)
* @returns {number} timer index
*/
addTimer(id, callBack, ms = -1)
{
let iTimer = this.aTimers.length;
this.aTimers.push([id, -1, ms, callBack]);
if (ms >= 0) this.setTimer(iTimer, ms);
return iTimer;
}
/**
* findTimer(id)
*
* @this {CPUx80}
* @param {string} id
* @returns {Array|null}
*/
findTimer(id)
{
for (let iTimer = 0; iTimer < this.aTimers.length; iTimer++) {
let timer = this.aTimers[iTimer];
if (timer[0] == id) return timer;
}
return null;
}
/**
* setTimer(iTimer, ms, fReset)
*
* Using the timer index from a previous addTimer() call, this sets that timer to fire after the
* specified number of milliseconds.
*
* This is preferred over JavaScript's setTimeout(), because all our timers are effectively paused when
* the CPU is paused (eg, when the Debugger halts execution). Moreover, setTimeout() handlers only run after
* runCPU() yields, which is far too granular for some components (eg, when the SerialPort tries to simulate
* interrupts at 9600 baud).
*
* Ideally, the only function that would use setTimeout() is runCPU(), while the rest of the components
* use setTimer(); however, due to legacy code (ie, code that predates these functions) and/or laziness,
* that's currently not the case. TODO: Fix.
*
* @this {CPUx80}
* @param {number} iTimer
* @param {number} ms (converted into a cycle countdown internally)
* @param {boolean} [fReset] (true if the timer should be reset even if already armed)
* @returns {number} (number of cycles used to arm timer, or -1 if error)
*/
setTimer(iTimer, ms, fReset)
{
let nCycles = -1;
if (iTimer >= 0 && iTimer < this.aTimers.length) {
let timer = this.aTimers[iTimer];
if (fReset || timer[1] < 0) {
nCycles = this.getMSCycles(ms);
/*
* If the CPU is currently executing a burst of cycles, the number of cycles it has executed in
* that burst so far must NOT be charged against the cycle timeout we're about to set. The simplest
* way to resolve that is to immediately call endBurst() and bias the cycle timeout by the number
* of cycles that the burst executed.
*/
if (this.flags.running) {
nCycles += this.endBurst();
}
timer[1] = nCycles;
}
}
return nCycles;
}
/**
* getMSCycles(ms)
*
* @this {CPUx80}
* @param {number} ms
* @returns {number} number of corresponding cycles
*/
getMSCycles(ms)
{
return ((this.nCyclesPerSecond * this.nCyclesMultiplier) / 1000 * ms)|0;
}
/**
* getBurstCycles(nCycles)
*
* Used by runCPU() to get min(nCycles,[timer cycle counts])
*
* @this {CPUx80}
* @param {number} nCycles (number of cycles about to execute)
* @returns {number} (either nCycles or less if a timer needs to fire)
*/
getBurstCycles(nCycles)
{
for (let iTimer = this.aTimers.length - 1; iTimer >= 0; iTimer--) {
let timer = this.aTimers[iTimer];
this.assert(!isNaN(timer[1]));