-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtextual_inversion.py
124 lines (113 loc) · 5.74 KB
/
textual_inversion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import os
import sys
import torch
import shutil
import argparse
from modules.Generator import Generator
from modules.Conceptualizer import Conceptualizer
# Create the parser and add arguments
parser = argparse.ArgumentParser()
parser.add_argument('--model_id', default="CompVis/stable-diffusion-v1-4", type=str,
help="The model checpoint you want to use")
parser.add_argument('--from_file', action=argparse.BooleanOptionalAction,
help="load arguments from file")
parser.add_argument('-p', '--prompt_file_path', default='prompt.txt', type=str, required= '--from_file' in sys.argv,
help="path file where to read prompt")
parser.add_argument('-s','--seed', default=42, type=int,
help="Set the random seed")
parser.add_argument('--from_concept_repo',required= not '--from_file' in sys.argv, type=str,
help="The start concept you want to use. (Provide a hugginface concept repo)")
parser.add_argument('--to_concept_repo',required= not '--from_file' in sys.argv, type=str,
help="The end concept you want to use. (Provide a hugginface concept repo)")
parser.add_argument('--from_prompt', required= not '--from_file' in sys.argv, type=str,
help="Start prompt you want to use")
parser.add_argument('--to_prompt', required= not '--from_file' in sys.argv, type=str,
help="End prompt you want to use")
parser.add_argument('--num_inference_steps', default=50, type=int,
help="Number of inference step.")
parser.add_argument('--guidance_scale', default=7.5, type=float,
help="The guidance scale value to set.")
parser.add_argument('--width', default=512, type=int,
help="Canvas width of generated image.")
parser.add_argument('--height', default=512, type=int,
help="Canvas height of generated image.")
parser.add_argument('--use_negative_prompt', action=argparse.BooleanOptionalAction,
help="flag to use negative prompt stored in negative_prompt.txt")
parser.add_argument('-b','--batch_size', default=1, type=int,
help="Batch size to use")
parser.add_argument('--mps', action=argparse.BooleanOptionalAction,
help="Flag that set mps as gpu device")
parser.add_argument('-i','--interpolation', default='semantic', choices=['semantic','visual'], type=str,
help="Choose the type of the interpolation. Options: semantic | visual. Default = semantic")
if __name__=='__main__':
# get args
args = parser.parse_args()
#login()
if not args.mps:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
else:
device='mps'
print(f'running on {device}')
if args.from_file:
f = open(args.prompt_file_path); prompt_file = f.read()
from_concept_repo, to_concept_repo, from_prompt, to_prompt = prompt_file.split('\n')
from_concept_repo = from_concept_repo.replace('--from_concept_repo ','')
to_concept_repo = to_concept_repo.replace('--to_concept_repo ','')
from_prompt = from_prompt.replace('--from_prompt ','')
to_prompt = to_prompt.replace('--to_prompt ','')
else:
from_concept_repo, to_concept_repo, from_prompt, to_prompt = args.from_concept_repo, args.to_concept_repo, args.from_prompt, args.to_prompt
print(f"\nfrom_concept_repo: {from_concept_repo}\nto_concept_repo: {to_concept_repo}\nfrom_prompt: {from_prompt}\nto_prompt: {to_prompt}\n")
# set up the components
seed = args.seed
model_id = args.model_id
hparams = {
'width': args.width,
'height': args.height,
'batch_size': args.batch_size,
'guidance_scale': args.guidance_scale,
'num_inference_steps': args.num_inference_steps
}
# load concepts
concepts = {
'repo': {
'to': to_concept_repo,
'from': from_concept_repo
},
'placeholders':{},
'learned_embeds_path':{}
}
# get tokenizer and text encoder for new concepts
conceptualizer = Conceptualizer(model_id, device)
tokenizer, text_encoder = conceptualizer.load_concepts(concepts)
# load generator
generator = Generator(model_id, device, hparams, tokenizer, text_encoder, seed=seed)
# get prompt
start_prompt = from_prompt.replace('<concept>',concepts['placeholders']['from'])
end_prompt = to_prompt.replace('<concept>',concepts['placeholders']['to'])
latents_list = []
if args.use_negative_prompt:
f = open('negative_prompt.txt'); negative_prompt = f.read()
else: negative_prompt=None
for prompt in [start_prompt,end_prompt]:
latents = generator.generate_conditioned_latents([prompt],negative_prompt=negative_prompt)
latents_list.append(latents)
# decode in 20 frames
save_dir = 'frames'
if os.path.exists(save_dir):
shutil.rmtree(save_dir);
os.mkdir(save_dir)
else:os.mkdir(save_dir)
for frame in range(20):
latents = torch.lerp(latents_list[0].detach().cpu(), latents_list[1].detach().cpu(), frame/20)
image = generator.decode_latents(latents)
generator.save_image(image, save_dir=save_dir, names=[f'{frame:02}'])
save_video_dir = 'gen_videos'
if not os.path.exists(save_video_dir):
os.mkdir(save_video_dir)
start_prompt=start_prompt.replace('<',"");start_prompt=start_prompt.replace('>',"")
end_prompt=end_prompt.replace('<',"");end_prompt=end_prompt.replace('>',"")
# make video
cmd = f"ffmpeg -framerate 10 -pattern_type glob -i '{save_dir}/*.png' -c:v libx264 -pix_fmt yuv420p\
{save_video_dir}/from_prompt_{'-'.join(start_prompt.split(' '))}_to_prompt_{'-'.join(end_prompt.split(' '))}_seed_{args.seed}.mp4"
os.system(cmd)