-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathload_data.py
54 lines (47 loc) · 1.74 KB
/
load_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
#! /usr/bin/python3
import pandas as pd
import os
data_folder_base = "data_"
##This file loads the data about the past prices in memory into a pandas dataframe
def load_money(period,name,max_period):
number_points = max_period // period
data_folder = data_folder_base + str(period)
data = pd.read_csv(data_folder + os.sep + name + '.csv')
index_to_keep = list(range(len(data)-number_points,len(data)))
data = data.take(index_to_keep)
data = data.reset_index()
return data
def adapt_moneys(moneys,period):
names = list(moneys)
first = moneys[names[0]]
n = len(first['date'])
min_date = first['date'][n-1]
max_date = 0
for name in names:
if moneys[name]['date'][n-1] < min_date:
min_date = moneys[name]['date'][n-1]
if moneys[name]['date'][n-1] > max_date:
max_date = moneys[name]['date'][n-1]
diff = (max_date - min_date) // period
for name in names:
last = moneys[name]['date'][n-1]
#remove from the end
end = (last - min_date)//period
#remove the rest from the beginning
begin = diff - end
index_to_keep = list(range(begin,n-end))
moneys[name] = moneys[name].take(index_to_keep).reset_index()
return moneys
def load_moneys(period,max_period,moneys_names):
moneys = {}
for name in moneys_names:
print("loading ",name)
moneys[name] = load_money(period,name,max_period)
print(moneys[name]['date'][len(moneys[name]['date'])-1])
moneys = adapt_moneys(moneys,period)
#for name in moneys_names:
# print("checking ",name)
# print("len = ",len(moneys[name]['date']))
# print(moneys[name]['date'][len(moneys[name]['date'])-1])
print("loaded")
return moneys