-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathknnalgo.py
83 lines (67 loc) · 2.25 KB
/
knnalgo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
from statistics import mean
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
from math import sqrt
# calculate the Euclidean distance between two vectors
def euclidean_distance(row1, row2):
distance = 0.0
for i in range(len(row1)):
distance += (row1[i] - row2[0])**2
return sqrt(distance)
# Locate the most similar neighbors returning neighborx and neighbory
def get_neighbors(train, test_row, num_neighbors):
distances = list()
for train_row in train:
dist = euclidean_distance(test_row, train_row)
distances.append((train_row, dist))
distances.sort(key=lambda tup: tup[1])
neighborsx = list()
neighborsy = list()
for i in range(num_neighbors):
neighborsx.append(distances[i][0][0])
neighborsy.append(distances[i][0][1])
return neighborsx, neighborsy, distances
def get_distances(dist):
lst = []
for i in range(len(dist)):
lst.append(dist[i][1])
return lst
def predict(nby):
return [mean(nby)]
def get_rmse(X, Y):
rmse_val = []
acc = []
opt = []
X_train, X_test, Y_train, Y_test = train_test_split(
X, Y, test_size=0.2, random_state=None, shuffle=False)
for K in range(len(X_train)):
K = K+1
samp = [[X_train[i], Y_train[i]] for i in range(len(X_train))]
nbx, nby, dist = get_neighbors(samp, X_test, K)
pred = [predict(nby)[0] for i in range(len(Y_test))]
error = sqrt(mean_squared_error(pred, Y_test))
rmse_val.append(error)
acclst = []
opt.append(pred)
for i in range(len(pred)):
if pred[i] < Y_test[i]:
acclst.append(pred[i]/Y_test[i]*100)
else:
acclst.append(Y_test[i]/pred[i]*100)
acc.append(mean(acclst))
acc.remove(acc[0])
opt.remove(opt[0])
return rmse_val, acc, opt, Y_test
def get_optimalK(rmse):
initlst = list(rmse)
initlst.remove(rmse[0])
if(rmse.index(min(initlst))+1) == 1:
return 2, initlst
else:
return ((rmse.index(min(initlst)))+1), initlst
def imputearr_lst(arr):
samparr = list(arr)
for i in range(len(samparr)):
if(arr[i] == 0):
samparr[i] = mean(arr)
return samparr