-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
162 lines (132 loc) · 6.31 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import argparse
import os
import time
import pandas as pd
import torch
from torch import nn
from torch import optim
from torch.autograd import Variable
from torch.utils.data import DataLoader
from model import models
from utils import data, util
parser = argparse.ArgumentParser(description="Train CNN")
parser.add_argument("-t", "--train", default="data/train.csv", type=str,
help="name of trainining-data file (default: data/train.csv)")
parser.add_argument("-v", "--validation", default="data/validation.csv", type=str,
help="name of validation-data file (default: data/validation.csv)")
parser.add_argument("-b", "--background", default="data/background.csv", type=str,
help="name of background-data file (default: data/background.csv)")
parser.add_argument("--save-dir", default="model/saves", type=str,
help="directory of saved model (default: model/saves)")
parser.add_argument("--save-prefix", default=None, type=str,
help="Prefix for saved model file (default: None)")
parser.add_argument("--batch-size", default=128, type=int,
help="mini-batch size (default: 128)")
parser.add_argument("--T0", default=10, type=int,
help="SGDR first cycle length (default: 10)")
parser.add_argument("--mult", default=2, type=int,
help="SGDR mult. value (default: 2)")
parser.add_argument("--epochs", default=70, type=int,
help="number of total epochs (default: 70)")
parser.add_argument("-lr", "--learning-rate", default=0.1, type=float,
help="Initial learning rate (default: 0.1)")
parser.add_argument("--momentum", default=0.9, type=float,
help="Momentum for optimizer (default: 0.9)")
parser.add_argument("--weight-decay", default=0.0005, type=float,
help="Weight-decay for optimizer (default: 0.0005)")
parser.add_argument("--num-workers", default=4, type=int,
help="Num-workers for each dataloader (default: 4)")
parser.add_argument("--disable-cuda", action="store_true",
help="Disable CUDA")
args = parser.parse_args()
args.cuda = not args.disable_cuda and torch.cuda.is_available()
trainset = pd.read_csv(args.train)
valset = pd.read_csv(args.validation)
background_set = pd.read_csv(args.background)
train = data.AudioDataset(trainset, background_set)
validation = data.AudioDataset(valset)
sampler = data.get_sampler(train)
train_loader = DataLoader(train, batch_size=args.batch_size, drop_last=True, shuffle=False,
sampler=sampler, num_workers=args.num_workers)
validation_loader = DataLoader(validation, batch_size=args.batch_size, shuffle=False,
num_workers=args.num_workers)
model = models.CNN()
if args.cuda:
model.cuda()
model_params = util.group_weight(model)
print("Model parameter count:", model.parameter_count)
epochs = args.epochs
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model_params, lr=args.learning_rate, momentum=args.momentum, weight_decay=args.weight_decay)
scheduler = util.CosineAnnealingLR(optimizer, len(train_loader) * args.T0, mult=args.mult)
def train(epoch, print_interval=100):
model.train()
running_loss = 0.0
correct, total = 0, 0
for i, batch in enumerate(train_loader):
scheduler.step()
inputs = Variable(batch["sound"])
labels = Variable(batch["label"])
if args.cuda:
inputs = inputs.cuda()
labels = labels.cuda()
optimizer.zero_grad()
output = model(inputs)
loss = criterion(output, labels)
loss.backward()
optimizer.step()
_, predicted = torch.max(output.data, 1)
total += labels.size(0)
correct += (predicted == labels.data).sum()
running_loss += loss.data[0]
if i % print_interval == print_interval - 1:
print("Epoch: {} - Iteration: {} - Loss: {}".format(epoch, i + 1, running_loss / print_interval))
train_logger.log(
{"epoch": epoch, "iteration": i + 1, "loss": running_loss / print_interval, "accuracy": None})
running_loss = 0.0
accuracy = correct / total * 100
training_loss = running_loss / (len(train_loader) % print_interval)
return accuracy, training_loss
def evaluate():
model.eval()
validation_loss = 0.0
correct, total = 0, 0
for i, batch in enumerate(validation_loader):
inputs = Variable(batch["sound"], volatile=True)
labels = Variable(batch["label"], volatile=True)
if args.cuda:
inputs = inputs.cuda()
labels = labels.cuda()
output = model(inputs)
loss = criterion(output, labels)
_, predicted = torch.max(output.data, 1)
total += labels.size(0)
correct += (predicted == labels.data).sum()
validation_loss += loss.data[0]
accuracy = correct / total * 100
validation_loss /= i
return accuracy, validation_loss
if args.save_prefix is None:
args.save_prefix = type(model).__name__
train_logger = util.CSVLogger(args.save_prefix + "_train_log", ["epoch", "iteration", "accuracy", "loss"])
validation_logger = util.CSVLogger(args.save_prefix + "_validation_log", ["epoch", "loss", "accuracy"])
training_start = time.time()
for epoch in range(1, epochs + 1):
epoch_start = time.time()
accuracy, loss = train(epoch)
validation_accuracy, validation_loss = evaluate()
end = time.time()
h, m, s = util.to_hms(epoch_start, end)
hh, mm, ss = util.to_hms(training_start, end)
print("Epoch: {}:".format(epoch))
print("Training accuracy: {}".format(accuracy))
print("Training loss: {}".format(loss))
print("Validation accuracy: {}".format(validation_accuracy))
print("Validation loss: {}".format(validation_loss))
print("Epoch time: {:.4}h {:.4}m {:.4}s".format(h, m, s))
print("Total time: {:.4}h {:.4}m {:.4}s\n".format(hh, mm, ss))
train_logger.log({"epoch": epoch, "iteration": len(train_loader), "accuracy": accuracy, "loss": loss})
validation_logger.log({"epoch": epoch, "accuracy": validation_accuracy, "loss": validation_loss})
save_path = os.path.join(args.save_dir,
args.save_prefix + "_acc_{}_loss_{}.pt".format(validation_accuracy, validation_loss))
torch.save(model.state_dict(), save_path)