|
83 | 83 | },
|
84 | 84 | "kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_ft_docci_10b_448/2",
|
85 | 85 | },
|
| 86 | + "pali_gemma2_mix_3b_224": { |
| 87 | + "metadata": { |
| 88 | + "description": ( |
| 89 | + "3 billion parameter, image size 224, 27-layer for " |
| 90 | + "SigLIP-So400m vision encoder and 26-layer Gemma2 2B lanuage " |
| 91 | + "model. This model has been fine-tuned on a wide range of " |
| 92 | + "vision-language tasks and domains." |
| 93 | + ), |
| 94 | + "params": 3032094960, |
| 95 | + "official_name": "PaliGemma2", |
| 96 | + "path": "pali_gemma2", |
| 97 | + "model_card": "https://www.kaggle.com/models/google/paligemma-2", |
| 98 | + }, |
| 99 | + "kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_mix_3b_224/2", |
| 100 | + }, |
| 101 | + "pali_gemma2_mix_3b_448": { |
| 102 | + "metadata": { |
| 103 | + "description": ( |
| 104 | + "3 billion parameter, image size 448, 27-layer for " |
| 105 | + "SigLIP-So400m vision encoder and 26-layer Gemma2 2B lanuage " |
| 106 | + "model. This model has been fine-tuned on a wide range of " |
| 107 | + "vision-language tasks and domains." |
| 108 | + ), |
| 109 | + "params": 3032979696, |
| 110 | + "official_name": "PaliGemma2", |
| 111 | + "path": "pali_gemma2", |
| 112 | + "model_card": "https://www.kaggle.com/models/google/paligemma-2", |
| 113 | + }, |
| 114 | + "kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_mix_3b_448/2", |
| 115 | + }, |
| 116 | + "pali_gemma2_mix_10b_224": { |
| 117 | + "metadata": { |
| 118 | + "description": ( |
| 119 | + "10 billion parameter, image size 224, 27-layer for " |
| 120 | + "SigLIP-So400m vision encoder and 42-layer Gemma2 9B lanuage " |
| 121 | + "model. This model has been fine-tuned on a wide range of " |
| 122 | + "vision-language tasks and domains." |
| 123 | + ), |
| 124 | + "params": 9662409456, |
| 125 | + "official_name": "PaliGemma2", |
| 126 | + "path": "pali_gemma2", |
| 127 | + "model_card": "https://www.kaggle.com/models/google/paligemma-2", |
| 128 | + }, |
| 129 | + "kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_mix_10b_224/2", |
| 130 | + }, |
| 131 | + "pali_gemma2_mix_10b_448": { |
| 132 | + "metadata": { |
| 133 | + "description": ( |
| 134 | + "10 billion parameter, image size 448, 27-layer for " |
| 135 | + "SigLIP-So400m vision encoder and 42-layer Gemma2 9B lanuage " |
| 136 | + "model. This model has been fine-tuned on a wide range of " |
| 137 | + "vision-language tasks and domains." |
| 138 | + ), |
| 139 | + "params": 9663294192, |
| 140 | + "official_name": "PaliGemma2", |
| 141 | + "path": "pali_gemma2", |
| 142 | + "model_card": "https://www.kaggle.com/models/google/paligemma-2", |
| 143 | + }, |
| 144 | + "kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_mix_10b_448/2", |
| 145 | + }, |
| 146 | + "pali_gemma2_mix_28b_224": { |
| 147 | + "metadata": { |
| 148 | + "description": ( |
| 149 | + "28 billion parameter, image size 224, 27-layer for " |
| 150 | + "SigLIP-So400m vision encoder and 46-layer Gemma2 27B lanuage " |
| 151 | + "model. This model has been fine-tuned on a wide range of " |
| 152 | + "vision-language tasks and domains." |
| 153 | + ), |
| 154 | + "params": 27650192112, |
| 155 | + "official_name": "PaliGemma2", |
| 156 | + "path": "pali_gemma2", |
| 157 | + "model_card": "https://www.kaggle.com/models/google/paligemma-2", |
| 158 | + }, |
| 159 | + "kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_28b_mix_224/2", |
| 160 | + }, |
| 161 | + "pali_gemma2_mix_28b_448": { |
| 162 | + "metadata": { |
| 163 | + "description": ( |
| 164 | + "28 billion parameter, image size 448, 27-layer for " |
| 165 | + "SigLIP-So400m vision encoder and 46-layer Gemma2 27B lanuage " |
| 166 | + "model. This model has been fine-tuned on a wide range of " |
| 167 | + "vision-language tasks and domains." |
| 168 | + ), |
| 169 | + "params": 27650192112, |
| 170 | + "official_name": "PaliGemma2", |
| 171 | + "path": "pali_gemma2", |
| 172 | + "model_card": "https://www.kaggle.com/models/google/paligemma-2", |
| 173 | + }, |
| 174 | + "kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_28b_mix_448/2", |
| 175 | + }, |
86 | 176 | "pali_gemma2_pt_3b_224": {
|
87 | 177 | "metadata": {
|
88 | 178 | "description": (
|
|
181 | 271 | "model. This model has been pre-trained on a mixture of "
|
182 | 272 | "datasets."
|
183 | 273 | ),
|
184 |
| - "params": 9662409456, |
| 274 | + "params": 27650192112, |
185 | 275 | "official_name": "PaliGemma2",
|
186 | 276 | "path": "pali_gemma2",
|
187 | 277 | "model_card": "https://www.kaggle.com/models/google/paligemma-2",
|
|
196 | 286 | "model. This model has been pre-trained on a mixture of "
|
197 | 287 | "datasets."
|
198 | 288 | ),
|
199 |
| - "params": 9663294192, |
| 289 | + "params": 27650192112, |
200 | 290 | "official_name": "PaliGemma2",
|
201 | 291 | "path": "pali_gemma2",
|
202 | 292 | "model_card": "https://www.kaggle.com/models/google/paligemma-2",
|
|
211 | 301 | "model. This model has been pre-trained on a mixture of "
|
212 | 302 | "datasets."
|
213 | 303 | ),
|
214 |
| - "params": 9666833136, |
| 304 | + "params": 27650192112, |
215 | 305 | "official_name": "PaliGemma2",
|
216 | 306 | "path": "pali_gemma2",
|
217 | 307 | "model_card": "https://www.kaggle.com/models/google/paligemma-2",
|
|
0 commit comments