forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 4
/
eval.py
460 lines (401 loc) · 18.1 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r"""Script for evaluating a UVF agent.
To run locally: See run_eval.py
To run on borg: See train_eval.borg
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import tensorflow as tf
slim = tf.contrib.slim
import gin.tf
# pylint: disable=unused-import
import agent
import train
from utils import utils as uvf_utils
from utils import eval_utils
from environments import create_maze_env
# pylint: enable=unused-import
flags = tf.app.flags
flags.DEFINE_string('eval_dir', None,
'Directory for writing logs/summaries during eval.')
flags.DEFINE_string('checkpoint_dir', None,
'Directory containing checkpoints to eval.')
FLAGS = flags.FLAGS
def get_evaluate_checkpoint_fn(master, output_dir, eval_step_fns,
model_rollout_fn, gamma, max_steps_per_episode,
num_episodes_eval, num_episodes_videos,
tuner_hook, generate_videos,
generate_summaries, video_settings):
"""Returns a function that evaluates a given checkpoint.
Args:
master: BNS name of the TensorFlow master
output_dir: The output directory to which the metric summaries are written.
eval_step_fns: A dictionary of a functions that return a list of
[state, action, reward, discount, transition_type] tensors,
indexed by summary tag name.
model_rollout_fn: Model rollout fn.
gamma: Discount factor for the reward.
max_steps_per_episode: Maximum steps to run each episode for.
num_episodes_eval: Number of episodes to evaluate and average reward over.
num_episodes_videos: Number of episodes to record for video.
tuner_hook: A callable(average reward, global step) that updates a Vizier
tuner trial.
generate_videos: Whether to generate videos of the agent in action.
generate_summaries: Whether to generate summaries.
video_settings: Settings for generating videos of the agent.
Returns:
A function that evaluates a checkpoint.
"""
sess = tf.Session(master, graph=tf.get_default_graph())
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
summary_writer = tf.summary.FileWriter(output_dir)
def evaluate_checkpoint(checkpoint_path):
"""Performs a one-time evaluation of the given checkpoint.
Args:
checkpoint_path: Checkpoint to evaluate.
Returns:
True if the evaluation process should stop
"""
restore_fn = tf.contrib.framework.assign_from_checkpoint_fn(
checkpoint_path,
uvf_utils.get_all_vars(),
ignore_missing_vars=True,
reshape_variables=False)
assert restore_fn is not None, 'cannot restore %s' % checkpoint_path
restore_fn(sess)
global_step = sess.run(slim.get_global_step())
should_stop = False
max_reward = -1e10
max_meta_reward = -1e10
for eval_tag, (eval_step, env_base,) in sorted(eval_step_fns.items()):
if hasattr(env_base, 'set_sess'):
env_base.set_sess(sess) # set session
if generate_summaries:
tf.logging.info(
'[%s] Computing average reward over %d episodes at global step %d.',
eval_tag, num_episodes_eval, global_step)
(average_reward, last_reward,
average_meta_reward, last_meta_reward, average_success,
states, actions) = eval_utils.compute_average_reward(
sess, env_base, eval_step, gamma, max_steps_per_episode,
num_episodes_eval)
tf.logging.info('[%s] Average reward = %f', eval_tag, average_reward)
tf.logging.info('[%s] Last reward = %f', eval_tag, last_reward)
tf.logging.info('[%s] Average meta reward = %f', eval_tag, average_meta_reward)
tf.logging.info('[%s] Last meta reward = %f', eval_tag, last_meta_reward)
tf.logging.info('[%s] Average success = %f', eval_tag, average_success)
if model_rollout_fn is not None:
preds, model_losses = eval_utils.compute_model_loss(
sess, model_rollout_fn, states, actions)
for i, (pred, state, model_loss) in enumerate(
zip(preds, states, model_losses)):
tf.logging.info('[%s] Model rollout step %d: loss=%f', eval_tag, i,
model_loss)
tf.logging.info('[%s] Model rollout step %d: pred=%s', eval_tag, i,
str(pred.tolist()))
tf.logging.info('[%s] Model rollout step %d: state=%s', eval_tag, i,
str(state.tolist()))
# Report the eval stats to the tuner.
if average_reward > max_reward:
max_reward = average_reward
if average_meta_reward > max_meta_reward:
max_meta_reward = average_meta_reward
for (tag, value) in [('Reward/average_%s_reward', average_reward),
('Reward/last_%s_reward', last_reward),
('Reward/average_%s_meta_reward', average_meta_reward),
('Reward/last_%s_meta_reward', last_meta_reward),
('Reward/average_%s_success', average_success)]:
summary_str = tf.Summary(value=[
tf.Summary.Value(
tag=tag % eval_tag,
simple_value=value)
])
summary_writer.add_summary(summary_str, global_step)
summary_writer.flush()
if generate_videos or should_stop:
# Do a manual reset before generating the video to see the initial
# pose of the robot, towards which the reset controller is moving.
if hasattr(env_base, '_gym_env'):
tf.logging.info('Resetting before recording video')
if hasattr(env_base._gym_env, 'reset_model'):
env_base._gym_env.reset_model() # pylint: disable=protected-access
else:
env_base._gym_env.wrapped_env.reset_model()
video_filename = os.path.join(output_dir, 'videos',
'%s_step_%d.mp4' % (eval_tag,
global_step))
eval_utils.capture_video(sess, eval_step, env_base,
max_steps_per_episode * num_episodes_videos,
video_filename, video_settings,
reset_every=max_steps_per_episode)
should_stop = should_stop or (generate_summaries and tuner_hook and
tuner_hook(max_reward, global_step))
return bool(should_stop)
return evaluate_checkpoint
def get_model_rollout(uvf_agent, tf_env):
"""Model rollout function."""
state_spec = tf_env.observation_spec()[0]
action_spec = tf_env.action_spec()[0]
state_ph = tf.placeholder(dtype=state_spec.dtype, shape=state_spec.shape)
action_ph = tf.placeholder(dtype=action_spec.dtype, shape=action_spec.shape)
merged_state = uvf_agent.merged_state(state_ph)
diff_value = uvf_agent.critic_net(tf.expand_dims(merged_state, 0),
tf.expand_dims(action_ph, 0))[0]
diff_value = tf.cast(diff_value, dtype=state_ph.dtype)
state_ph.shape.assert_is_compatible_with(diff_value.shape)
next_state = state_ph + diff_value
def model_rollout_fn(sess, state, action):
return sess.run(next_state, feed_dict={state_ph: state, action_ph: action})
return model_rollout_fn
def get_eval_step(uvf_agent,
state_preprocess,
tf_env,
action_fn,
meta_action_fn,
environment_steps,
num_episodes,
mode='eval'):
"""Get one-step policy/env stepping ops.
Args:
uvf_agent: A UVF agent.
tf_env: A TFEnvironment.
action_fn: A function to produce actions given current state.
meta_action_fn: A function to produce meta actions given current state.
environment_steps: A variable to count the number of steps in the tf_env.
num_episodes: A variable to count the number of episodes.
mode: a string representing the mode=[train, explore, eval].
Returns:
A collect_experience_op that excute an action and store into the
replay_buffer
"""
tf_env.start_collect()
state = tf_env.current_obs()
action = action_fn(state, context=None)
state_repr = state_preprocess(state)
action_spec = tf_env.action_spec()
action_ph = tf.placeholder(dtype=action_spec.dtype, shape=action_spec.shape)
with tf.control_dependencies([state]):
transition_type, reward, discount = tf_env.step(action_ph)
def increment_step():
return environment_steps.assign_add(1)
def increment_episode():
return num_episodes.assign_add(1)
def no_op_int():
return tf.constant(0, dtype=tf.int64)
step_cond = uvf_agent.step_cond_fn(state, action,
transition_type,
environment_steps, num_episodes)
reset_episode_cond = uvf_agent.reset_episode_cond_fn(
state, action,
transition_type, environment_steps, num_episodes)
reset_env_cond = uvf_agent.reset_env_cond_fn(state, action,
transition_type,
environment_steps, num_episodes)
increment_step_op = tf.cond(step_cond, increment_step, no_op_int)
with tf.control_dependencies([increment_step_op]):
increment_episode_op = tf.cond(reset_episode_cond, increment_episode,
no_op_int)
with tf.control_dependencies([reward, discount]):
next_state = tf_env.current_obs()
next_state_repr = state_preprocess(next_state)
with tf.control_dependencies([increment_episode_op]):
post_reward, post_meta_reward = uvf_agent.cond_begin_episode_op(
tf.logical_not(reset_episode_cond),
[state, action_ph, reward, next_state,
state_repr, next_state_repr],
mode=mode, meta_action_fn=meta_action_fn)
# Important: do manual reset after getting the final reward from the
# unreset environment.
with tf.control_dependencies([post_reward, post_meta_reward]):
cond_reset_op = tf.cond(reset_env_cond,
tf_env.reset,
tf_env.current_time_step)
# Add a dummy control dependency to force the reset_op to run
with tf.control_dependencies(cond_reset_op):
post_reward, post_meta_reward = map(tf.identity, [post_reward, post_meta_reward])
eval_step = [next_state, action_ph, transition_type, post_reward, post_meta_reward, discount, uvf_agent.context_vars, state_repr]
if callable(action):
def step_fn(sess):
action_value = action(sess)
return sess.run(eval_step, feed_dict={action_ph: action_value})
else:
action = uvf_utils.clip_to_spec(action, action_spec)
def step_fn(sess):
action_value = sess.run(action)
return sess.run(eval_step, feed_dict={action_ph: action_value})
return step_fn
@gin.configurable
def evaluate(checkpoint_dir,
eval_dir,
environment=None,
num_bin_actions=3,
agent_class=None,
meta_agent_class=None,
state_preprocess_class=None,
gamma=1.0,
num_episodes_eval=10,
eval_interval_secs=60,
max_number_of_evaluations=None,
checkpoint_timeout=None,
timeout_fn=None,
tuner_hook=None,
generate_videos=False,
generate_summaries=True,
num_episodes_videos=5,
video_settings=None,
eval_modes=('eval',),
eval_model_rollout=False,
policy_save_dir='policy',
checkpoint_range=None,
checkpoint_path=None,
max_steps_per_episode=None,
evaluate_nohrl=False):
"""Loads and repeatedly evaluates a checkpointed model at a set interval.
Args:
checkpoint_dir: The directory where the checkpoints reside.
eval_dir: Directory to save the evaluation summary results.
environment: A BaseEnvironment to evaluate.
num_bin_actions: Number of bins for discretizing continuous actions.
agent_class: An RL agent class.
meta_agent_class: A Meta agent class.
gamma: Discount factor for the reward.
num_episodes_eval: Number of episodes to evaluate and average reward over.
eval_interval_secs: The number of seconds between each evaluation run.
max_number_of_evaluations: The max number of evaluations. If None the
evaluation continues indefinitely.
checkpoint_timeout: The maximum amount of time to wait between checkpoints.
If left as `None`, then the process will wait indefinitely.
timeout_fn: Optional function to call after a timeout.
tuner_hook: A callable that takes the average reward and global step and
updates a Vizier tuner trial.
generate_videos: Whether to generate videos of the agent in action.
generate_summaries: Whether to generate summaries.
num_episodes_videos: Number of episodes to evaluate for generating videos.
video_settings: Settings for generating videos of the agent.
optimal action based on the critic.
eval_modes: A tuple of eval modes.
eval_model_rollout: Evaluate model rollout.
policy_save_dir: Optional sub-directory where the policies are
saved.
checkpoint_range: Optional. If provided, evaluate all checkpoints in
the range.
checkpoint_path: Optional sub-directory specifying which checkpoint to
evaluate. If None, will evaluate the most recent checkpoint.
"""
tf_env = create_maze_env.TFPyEnvironment(environment)
observation_spec = [tf_env.observation_spec()]
action_spec = [tf_env.action_spec()]
assert max_steps_per_episode, 'max_steps_per_episode need to be set'
if agent_class.ACTION_TYPE == 'discrete':
assert False
else:
assert agent_class.ACTION_TYPE == 'continuous'
if meta_agent_class is not None:
assert agent_class.ACTION_TYPE == meta_agent_class.ACTION_TYPE
with tf.variable_scope('meta_agent'):
meta_agent = meta_agent_class(
observation_spec,
action_spec,
tf_env,
)
else:
meta_agent = None
with tf.variable_scope('uvf_agent'):
uvf_agent = agent_class(
observation_spec,
action_spec,
tf_env,
)
uvf_agent.set_meta_agent(agent=meta_agent)
with tf.variable_scope('state_preprocess'):
state_preprocess = state_preprocess_class()
# run both actor and critic once to ensure networks are initialized
# and gin configs will be saved
# pylint: disable=protected-access
temp_states = tf.expand_dims(
tf.zeros(
dtype=uvf_agent._observation_spec.dtype,
shape=uvf_agent._observation_spec.shape), 0)
# pylint: enable=protected-access
temp_actions = uvf_agent.actor_net(temp_states)
uvf_agent.critic_net(temp_states, temp_actions)
# create eval_step_fns for each action function
eval_step_fns = dict()
meta_agent = uvf_agent.meta_agent
for meta in [True] + [False] * evaluate_nohrl:
meta_tag = 'hrl' if meta else 'nohrl'
uvf_agent.set_meta_agent(meta_agent if meta else None)
for mode in eval_modes:
# wrap environment
wrapped_environment = uvf_agent.get_env_base_wrapper(
environment, mode=mode)
action_wrapper = lambda agent_: agent_.action
action_fn = action_wrapper(uvf_agent)
meta_action_fn = action_wrapper(meta_agent)
eval_step_fns['%s_%s' % (mode, meta_tag)] = (get_eval_step(
uvf_agent=uvf_agent,
state_preprocess=state_preprocess,
tf_env=tf_env,
action_fn=action_fn,
meta_action_fn=meta_action_fn,
environment_steps=tf.Variable(
0, dtype=tf.int64, name='environment_steps'),
num_episodes=tf.Variable(0, dtype=tf.int64, name='num_episodes'),
mode=mode), wrapped_environment,)
model_rollout_fn = None
if eval_model_rollout:
model_rollout_fn = get_model_rollout(uvf_agent, tf_env)
tf.train.get_or_create_global_step()
if policy_save_dir:
checkpoint_dir = os.path.join(checkpoint_dir, policy_save_dir)
tf.logging.info('Evaluating policies at %s', checkpoint_dir)
tf.logging.info('Running episodes for max %d steps', max_steps_per_episode)
evaluate_checkpoint_fn = get_evaluate_checkpoint_fn(
'', eval_dir, eval_step_fns, model_rollout_fn, gamma,
max_steps_per_episode, num_episodes_eval, num_episodes_videos, tuner_hook,
generate_videos, generate_summaries, video_settings)
if checkpoint_path is not None:
checkpoint_path = os.path.join(checkpoint_dir, checkpoint_path)
evaluate_checkpoint_fn(checkpoint_path)
elif checkpoint_range is not None:
model_files = tf.gfile.Glob(
os.path.join(checkpoint_dir, 'model.ckpt-*.index'))
tf.logging.info('Found %s policies at %s', len(model_files), checkpoint_dir)
model_files = {
int(f.split('model.ckpt-', 1)[1].split('.', 1)[0]):
os.path.splitext(f)[0]
for f in model_files
}
model_files = {
k: v
for k, v in model_files.items()
if k >= checkpoint_range[0] and k <= checkpoint_range[1]
}
tf.logging.info('Evaluating %d policies at %s',
len(model_files), checkpoint_dir)
for _, checkpoint_path in sorted(model_files.items()):
evaluate_checkpoint_fn(checkpoint_path)
else:
eval_utils.evaluate_checkpoint_repeatedly(
checkpoint_dir,
evaluate_checkpoint_fn,
eval_interval_secs=eval_interval_secs,
max_number_of_evaluations=max_number_of_evaluations,
checkpoint_timeout=checkpoint_timeout,
timeout_fn=timeout_fn)