forked from kostrzewa/tmLQCD
-
Notifications
You must be signed in to change notification settings - Fork 0
/
P_M_eta.c
433 lines (348 loc) · 12.6 KB
/
P_M_eta.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
/***********************************************************************
*
* Copyright (C) 2011 Elena Garcia-Ramos
*
* This file is part of tmLQCD.
*
* tmLQCD is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* tmLQCD is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with tmLQCD. If not, see <http://www.gnu.org/licenses/>.
***********************************************************************/
#ifdef HAVE_CONFIG_H
# include<config.h>
#endif
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "global.h"
#include "start.h"
#include "su3.h"
#include "linalg_eo.h"
#include "chebyshev_polynomial_nd.h"
#include <io/eospinor.h>
#include "solver/solver.h"
#include "solver/jdher.h"
#include "solver/eigenvalues.h"
#include "X_psi.h"
#include "gamma.h"
double rnorm=-1;
/* |R>=rnorm^2 Q^2 |S> */
void norm_X_sqr_psi(spinor * const R, spinor * const S,
double const mstar);
/* |R>=rnorm Q|S> */
void norm_X_n_psi(spinor * const R, spinor * const S,
const int n, double const mstar);
/* Construct the sign function of the operator X */
/* X/sqrt(X^2) ,, X = 1-(2M^2/(DdaggeraD+M^2))*/
void X_over_sqrt_X_sqr(spinor * const R, double * const c,
const int n, spinor * const S,
const double minev, double const mstar);
double * x_cheby_coef = NULL;
double epsilon=0.01;
int x_n_cheby = 32;
void h_X_sqr_eta(spinor * const R1,spinor * const R2,spinor * const S, double const mstar){
int i;
double mode_n;
spinor **s, *s_;
static int n_cheby = 0;
static int rec_coefs = 1;
/* Compute Chebyshev coefficients */
/* c[j] ,, j=0..n, n=degree of the polynomial*/
if(g_proc_id == 0) {
printf("Degree of Polynomial set to %d\n", x_n_cheby);
}
if(n_cheby != x_n_cheby || rec_coefs) {
if(x_cheby_coef != NULL) free(x_cheby_coef);
x_cheby_coef = (double*)malloc(x_n_cheby*sizeof(double));
chebyshev_coefs(epsilon, 1., x_cheby_coef, x_n_cheby, -0.5);//coefs for f(x)=x^(-0.5) // represents P(y)=1/sqrt(y) in paper "Chiral symmetry breaking an the Banks-Casher relation in lattice QCD with Wilson quarks" page 12.
rec_coefs = 0;
n_cheby = x_n_cheby;
}
if(g_proc_id == 0) {
printf("mstar= %f \n",mstar);
}
/*Evaluate X_over_sqrt_X_sqr*/
X_over_sqrt_X_sqr(R1, x_cheby_coef, x_n_cheby, S, epsilon, mstar);
/* Construct h(x)=1/2-1/2 X/sqrt(X^2) */
/* this routine makes (*R)=c1*(*R)+c2*(*S) , c1 and c2 are real constants */
assign_mul_add_mul_r(R1,S, 0.5, 0.5, VOLUME);
/*we need h(X)^2|nu>*/
X_over_sqrt_X_sqr(R2, x_cheby_coef, x_n_cheby, R1, epsilon, mstar);
assign_mul_add_mul_r(R2,R1,0.5, 0.5, VOLUME);
return;
}
void h_X_eta(spinor * const R,spinor * const S, double const mstar){
int i;
double mode_n;
spinor **s, *s_;
static int n_cheby = 0;
static int rec_coefs = 1;
/* Compute Chebyshev coefficients */
/* c[j] ,, j=0..n, n=degree of the polynomial*/
if(g_proc_id == 0) {
printf("Degree of Polynomial set to %d\n", x_n_cheby);
}
if(n_cheby != x_n_cheby || rec_coefs) {
if(x_cheby_coef != NULL) free(x_cheby_coef);
x_cheby_coef = (double*)malloc(x_n_cheby*sizeof(double));
chebyshev_coefs(epsilon, 1., x_cheby_coef, x_n_cheby, -0.5);
rec_coefs = 0;
n_cheby = x_n_cheby;
}
/*Evaluate X_over_sqrt_X_sqr*/
X_over_sqrt_X_sqr(R, x_cheby_coef, x_n_cheby, S, epsilon, mstar);
/* Construct h(x)=1/2-1/2 X/sqrt(X^2) */
/* this routine makes (*R)=c1*(*R)+c2*(*S) , c1 and c2 are real constants */
assign_mul_add_mul_r(R,S, 0.5, 0.5, VOLUME);
return;
}
void h_X_4_eta(spinor * const R1,spinor * const R2,spinor * const S, double const mstar){
int i;
double mode_n;
spinor **s, *s_;
static int n_cheby = 0;
static int rec_coefs = 1;
/* Compute Chebyshev coefficients */
/* c[j] ,, j=0..n, n=degree of the polynomial*/
if(g_proc_id == 0) {
printf("Degree of Polynomial set to %d\n", x_n_cheby);
}
if(n_cheby != x_n_cheby || rec_coefs) {
if(x_cheby_coef != NULL) free(x_cheby_coef);
x_cheby_coef = (double*)malloc(x_n_cheby*sizeof(double));
chebyshev_coefs(epsilon, 1., x_cheby_coef, x_n_cheby, -0.5);
rec_coefs = 0;
n_cheby = x_n_cheby;
}
s_ = calloc(3*VOLUMEPLUSRAND+1, sizeof(spinor));
s = calloc(3, sizeof(spinor*));
for(i = 0; i < 3; i++) {
#if (defined SSE3 || defined SSE2 || defined SSE)
s[i] = (spinor*)(((unsigned long int)(s_)+ALIGN_BASE)&~ALIGN_BASE)+i*VOLUMEPLUSRAND;
#else
s[i] = s_+i*VOLUMEPLUSRAND;
#endif
}
printf("mstar= %f \n",mstar);
/* Evaluate X_over_sqrt_X_sqr */
X_over_sqrt_X_sqr(s[0], x_cheby_coef, x_n_cheby, S, epsilon, mstar);
/* Construct h(x)=1/2-1/2 X/sqrt(X^2) */
/* this routine makes (*R)=c1*(*R)+c2*(*S) , c1 and c2 are real constants */
assign_mul_add_mul_r(s[0],S, 0.5, 0.5, VOLUME);
X_over_sqrt_X_sqr(R1, x_cheby_coef, x_n_cheby, s[0], epsilon, mstar);
assign_mul_add_mul_r(R1,s[0],0.5, 0.5, VOLUME);
X_over_sqrt_X_sqr(s[2], x_cheby_coef, x_n_cheby, R1, epsilon, mstar);
assign_mul_add_mul_r(s[2],R1,0.5, 0.5, VOLUME);
/*we need h(X)^2|nu>*/
X_over_sqrt_X_sqr(R2, x_cheby_coef, x_n_cheby, s[2], epsilon, mstar);
assign_mul_add_mul_r(R2,s[2],0.5, 0.5, VOLUME);
free(s);
free(s_);
return;
}
void norm_X_sqr_psi(spinor * const R, spinor * const S, double const mstar) {
spinor *aux_,*aux;
#if ( defined SSE || defined SSE2 || defined SSE3 )
aux_=calloc(VOLUMEPLUSRAND+1, sizeof(spinor));
aux = (spinor *)(((unsigned long int)(aux_)+ALIGN_BASE)&~ALIGN_BASE);
#else
aux_=calloc(VOLUMEPLUSRAND, sizeof(spinor));
aux = aux_;
#endif
/* Here is where we have to include our operator which in this case is
X = 1 - (2M^2)/(D_m^dagger*D_m + mu^2 + M^2) */
if(1)
{
X_psi(aux, S, mstar);
X_psi(R, aux, mstar);
}
else
{
printf("using X_psiSquare.\n");
X_psiSquare(R, S, mstar);
}
mul_r(R, rnorm*rnorm, R, VOLUME);
free(aux_);
return;
}
void norm_X_n_psi(spinor * const R, spinor * const S,
const int n, double const mstar) {
int i;
double npar = 1.;
spinor *aux_,*aux;
#if (defined SSE || defined SSE2 || defined SSE3)
aux_=calloc(VOLUMEPLUSRAND+1, sizeof(spinor));
aux = (spinor *)(((unsigned long int)(aux_)+ALIGN_BASE)&~ALIGN_BASE);
#else
aux_=calloc(VOLUMEPLUSRAND, sizeof(spinor));
aux = aux_;
#endif
assign(aux, S, VOLUME);
for(i=0; i < n; i++){
/* Here is where we have to include our operator which in this case is
X = 1 - (2M^2)/(D_m^dagger*D_m + M^2) */
X_psi(R, aux, mstar);
npar *= rnorm;
}
mul_r(R, npar, R, VOLUME);
free(aux_);
return;
}
void X_over_sqrt_X_sqr(spinor * const R, double * const c,
const int n, spinor * const S, const double minev, double const mstar) {
//x/sqrt(x*x) <=> normalisation <= reasoned by Clenshaw recurrence: maps X to [-1,1]
int j;
double fact1, fact2, temp1, temp2, temp3, temp4, maxev;
spinor *sv_, *sv, *d_, *d, *dd_, *dd, *aux_, *aux, *aux3_, *aux3;// *_ holds the adress of the sse-unaligned memory block
#if ( defined SSE || defined SSE2 || defined SSE3)
sv_ = calloc(VOLUMEPLUSRAND+1, sizeof(spinor));
sv = (spinor *)(((unsigned long int)(sv_)+ALIGN_BASE)&~ALIGN_BASE);
d_ = calloc(VOLUMEPLUSRAND+1, sizeof(spinor));
d = (spinor *)(((unsigned long int)(d_)+ALIGN_BASE)&~ALIGN_BASE);
dd_ = calloc(VOLUMEPLUSRAND+1, sizeof(spinor));
dd = (spinor *)(((unsigned long int)(dd_)+ALIGN_BASE)&~ALIGN_BASE);
aux_ = calloc(VOLUMEPLUSRAND+1, sizeof(spinor));
aux = (spinor *)(((unsigned long int)(aux_)+ALIGN_BASE)&~ALIGN_BASE);
aux3_= calloc(VOLUMEPLUSRAND+1, sizeof(spinor));
aux3 = (spinor *)(((unsigned long int)(aux3_)+ALIGN_BASE)&~ALIGN_BASE);
#else
sv_=calloc(VOLUMEPLUSRAND, sizeof(spinor));
sv = sv_;
d_=calloc(VOLUMEPLUSRAND, sizeof(spinor));
d = d_;
dd_=calloc(VOLUMEPLUSRAND, sizeof(spinor));
dd = dd_;
aux_=calloc(VOLUMEPLUSRAND, sizeof(spinor));
aux = aux_;
aux3_=calloc(VOLUMEPLUSRAND, sizeof(spinor));
aux3 = aux3_;
#endif
/*EVALUATE THE APPROXIMATION USING THE CLENSHAW'S RECURRENCE FORMULA*/
maxev=1.0;
/*interval = [minev,maxev] = [epsilon,1]*/
fact1=4/(maxev-minev);
fact2=-2*(maxev+minev)/(maxev-minev);
/* d=0 , dd=0 */
zero_spinor_field(d, VOLUME);
zero_spinor_field(dd, VOLUME);
/*input S = aux3*/
if(0) assign_sub_lowest_eigenvalues(aux3, S, no_eigenvalues-1, VOLUME);
else assign(aux3, S, VOLUME);
/*starting the loop*/
if(1) {
for (j = n-1; j >= 1; j--) {
/*sv=d = d_j+1*/
assign(sv, d, VOLUME);
/*aux= our random field S =0(j=n-1)*/
assign(aux, d, VOLUME);
if(j == n-1){
assign(R, aux, VOLUME);//=0
}
else{
/*|R>=rnorm^2 X^2|aux> -> since aux=d -> |R>=rnorm^2 Q^2|d>*/
norm_X_sqr_psi(R, aux, mstar);//WARNING: - maybe we have to pass this point only when j=n-2, because R is not manipulated in the loop body.
// - seems to setup d_n-1=0
}
temp1=-1.0;
temp2=c[j]; /*Chebyshev coefficients*/
/* d = d*fact2 + R*fact1 + dd*temp1 + aux3*temp2
d = -2*(maxev+minev)/(maxev-minev)*d + 4/(maxev-minev)*R
-1*dd + c[j]*aux3 */
/* y = (2*x-a-b)/(b-a) , y2=2*y
d = y2*d - dd + c[j] = -2*(a+b)*d/(b-a) + 4*x*d/(b-a) -dd + c[j] */
assign_mul_add_mul_add_mul_add_mul_r(d, R, dd, aux3, fact2, fact1, temp1, temp2, VOLUME);// =d_j+1
/* dd = sv */
assign(dd, sv, VOLUME);// = d_j+2
}
/* R = d */
if(0) assign_sub_lowest_eigenvalues(R, d, no_eigenvalues-1, VOLUME);
else assign(R, d, VOLUME);
/*|aux>=rnorm^2 Q^2|R> */
norm_X_sqr_psi(aux, R, mstar);
temp1=-1.0;
temp2=c[0]/2.;
temp3=fact1/2.;
temp4=fact2/2.;
/* aux = aux*temp3 + d*temp4 + dd*temp1 + aux3*temp2
aux = 2/(maxev-minev)*aux + -(maxev+minev)/(maxev-minev)d
-1*dd + 0.5*c[j]*aux3 */
/* P(X^2)|_x = y*d -dd + 0.5*c[0] */
assign_mul_add_mul_add_mul_add_mul_r(aux, d, dd, aux3, temp3, temp4, temp1, temp2, VOLUME);
/* ONCE WE HAVE THE EVALUATION OF P(X^2) = 1/SQRT(X^2)
WE CONSTRUCT -X/SQRT(X^2) --> -X*P(X^2) */
norm_X_n_psi(R, aux, 1, mstar);
}
free(sv_);
free(d_);
free(dd_);
free(aux_);
free(aux3_);
return;
}
void Check_Approximation(double const mstar) {
if(g_proc_id == 0) {
printf("Checking the approximation of X/sqrt(X^2) in the mode number: \n");
}
int i;
double res = 0;
spinor **s, *s_;
spinor *Sin = NULL;
spinor *Sin_ = NULL;
static int n_cheby = 0;
static int rec_coefs = 1;
printf("epsilon= %f \n", epsilon);
printf("M*^2= %f \n", mstar);
printf("x_n_cheby= %d \n", x_n_cheby);
if(n_cheby != x_n_cheby || rec_coefs) {
if(x_cheby_coef != NULL) free(x_cheby_coef);
x_cheby_coef = (double*)malloc(x_n_cheby*sizeof(double));
chebyshev_coefs(epsilon, 1., x_cheby_coef, x_n_cheby, -0.5);
rec_coefs = 0;
n_cheby = x_n_cheby;
}
#if (defined SSE3 || defined SSE2 || defined SSE)
Sin_ = calloc(VOLUMEPLUSRAND+1, sizeof(spinor));
Sin = (spinor *)(((unsigned long int)(Sin_)+ALIGN_BASE)&~ALIGN_BASE);
#else
Sin =calloc(VOLUMEPLUSRAND, sizeof(spinor));
#endif
random_spinor_field(Sin, VOLUME, 1);
s_ = calloc(4*VOLUMEPLUSRAND+1, sizeof(spinor));
s = calloc(4, sizeof(spinor*));
for(i = 0; i < 4; i++) {
#if (defined SSE3 || defined SSE2 || defined SSE)
s[i] = (spinor*)(((unsigned long int)(s_)+ALIGN_BASE)&~ALIGN_BASE)+i*VOLUMEPLUSRAND;
#else
s[i] = s_+i*VOLUMEPLUSRAND;
#endif
}
X_over_sqrt_X_sqr(s[0], x_cheby_coef, x_n_cheby, Sin, epsilon, mstar);
diff(s[2], Sin, s[0], VOLUME);
diff(s[2], Sin, s[0], VOLUME);
X_over_sqrt_X_sqr(s[1], x_cheby_coef, x_n_cheby, s[0], epsilon, mstar);
diff(s[3], s[1], Sin, VOLUME);
res = square_norm(s[3],VOLUME,0);
if(g_proc_id == 0) {
printf("\n");
printf("Deviation from the real value : \n");
printf("||X^2/sqrt(X^2)|psi> - |nu>||^2 = %1.4e \n",res);
printf("\n");
}
#if (defined SSE3 || defined SSE2 || defined SSE)
free(Sin_);
#else
free(Sin);
#endif
free(s);
free(s_);
return;
}