forked from kostrzewa/tmLQCD
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cloverdet_monomial.c
202 lines (170 loc) · 6.5 KB
/
cloverdet_monomial.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
/***********************************************************************
*
* Copyright (C) 2008 Carsten Urbach
*
* This file is part of tmLQCD.
*
* tmLQCD is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* tmLQCD is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with tmLQCD. If not, see <http://www.gnu.org/licenses/>.
***********************************************************************/
#ifdef HAVE_CONFIG_H
# include<config.h>
#endif
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "global.h"
#include "su3.h"
#include "su3adj.h"
#include "su3spinor.h"
#include "ranlxd.h"
#include "sse.h"
#include "start.h"
#include "linalg_eo.h"
#include "deriv_Sb.h"
#include "gamma.h"
#include "tm_operators.h"
#include "Hopping_Matrix.h"
#include "solver/chrono_guess.h"
#include "solver/solver.h"
#include "clover_leaf.h"
#include "read_input.h"
#include "hamiltonian_field.h"
#include "boundary.h"
#include "monomial.h"
#include "clover.h"
#include "cloverdet_monomial.h"
/* think about chronological solver ! */
void cloverdet_derivative(const int id, hamiltonian_field_t * const hf) {
monomial * mnl = &monomial_list[id];
for(int i = 0; i < VOLUME; i++) {
for(int mu = 0; mu < 4; mu++) {
_su3_zero(swm[i][mu]);
_su3_zero(swp[i][mu]);
}
}
(*mnl).forcefactor = 1.;
/*********************************************************************
*
* even/odd version
*
* This a term is det(\hat Q^2(\mu))
*
*********************************************************************/
g_mu = mnl->mu;
g_mu3 = mnl->rho;
boundary(mnl->kappa);
// we compute the clover term (1 + T_ee(oo)) for all sites x
sw_term( (const su3**) hf->gaugefield, mnl->kappa, mnl->c_sw);
// we invert it for the even sites only
sw_invert(EE, mnl->mu);
if(mnl->solver != CG && g_proc_id == 0) {
fprintf(stderr, "Bicgstab currently not implemented, using CG instead! (cloverdet_monomial.c)\n");
}
// Invert Q_{+} Q_{-}
// X_o -> DUM_DERI+1
chrono_guess(g_spinor_field[DUM_DERI+1], mnl->pf, mnl->csg_field, mnl->csg_index_array,
mnl->csg_N, mnl->csg_n, VOLUME/2, mnl->Qsq);
mnl->iter1 += cg_her(g_spinor_field[DUM_DERI+1], mnl->pf, mnl->maxiter, mnl->forceprec,
g_relative_precision_flag, VOLUME/2, mnl->Qsq);
chrono_add_solution(g_spinor_field[DUM_DERI+1], mnl->csg_field, mnl->csg_index_array,
mnl->csg_N, &mnl->csg_n, VOLUME/2);
// Y_o -> DUM_DERI
mnl->Qm(g_spinor_field[DUM_DERI], g_spinor_field[DUM_DERI+1]);
// apply Hopping Matrix M_{eo}
// to get the even sites of X_e
H_eo_sw_inv_psi(g_spinor_field[DUM_DERI+2], g_spinor_field[DUM_DERI+1], EE, -mnl->mu);
// \delta Q sandwitched by Y_o^\dagger and X_e
deriv_Sb(OE, g_spinor_field[DUM_DERI], g_spinor_field[DUM_DERI+2], hf, mnl->forcefactor);
// to get the even sites of Y_e
H_eo_sw_inv_psi(g_spinor_field[DUM_DERI+3], g_spinor_field[DUM_DERI], EE, mnl->mu);
// \delta Q sandwitched by Y_e^\dagger and X_o
// uses the gauge field in hf and changes the derivative fields in hf
deriv_Sb(EO, g_spinor_field[DUM_DERI+3], g_spinor_field[DUM_DERI+1], hf, mnl->forcefactor);
// here comes the clover term...
// computes the insertion matrices for S_eff
// result is written to swp and swm
// even/even sites sandwiched by gamma_5 Y_e and gamma_5 X_e
gamma5(g_spinor_field[DUM_DERI+2], g_spinor_field[DUM_DERI+2], VOLUME/2);
sw_spinor(EO, g_spinor_field[DUM_DERI+2], g_spinor_field[DUM_DERI+3]);
// odd/odd sites sandwiched by gamma_5 Y_o and gamma_5 X_o
gamma5(g_spinor_field[DUM_DERI], g_spinor_field[DUM_DERI], VOLUME/2);
sw_spinor(OE, g_spinor_field[DUM_DERI], g_spinor_field[DUM_DERI+1]);
// compute the contribution for the det-part
// we again compute only the insertion matrices for S_det
// the result is added to swp and swm
// even sites only!
sw_deriv(EE, mnl->mu);
// now we compute
// finally, using the insertion matrices stored in swm and swp
// we compute the terms F^{det} and F^{sw} at once
// uses the gaugefields in hf and changes the derivative field in hf
sw_all(hf, mnl->kappa*mnl->forcefactor, mnl->c_sw);
g_mu = g_mu1;
g_mu3 = 0.;
boundary(g_kappa);
return;
}
void cloverdet_heatbath(const int id, hamiltonian_field_t * const hf) {
monomial * mnl = &monomial_list[id];
g_mu = mnl->mu;
g_mu3 = mnl->rho;
g_c_sw = mnl->c_sw;
boundary(mnl->kappa);
mnl->csg_n = 0;
mnl->csg_n2 = 0;
mnl->iter0 = 0;
mnl->iter1 = 0;
init_sw_fields();
sw_term( (const su3**) hf->gaugefield, mnl->kappa, mnl->c_sw);
sw_invert(EE, mnl->mu);
random_spinor_field(g_spinor_field[2], VOLUME/2, mnl->rngrepro);
mnl->energy0 = square_norm(g_spinor_field[2], VOLUME/2, 1);
mnl->Qp(mnl->pf, g_spinor_field[2]);
chrono_add_solution(mnl->pf, mnl->csg_field, mnl->csg_index_array,
mnl->csg_N, &mnl->csg_n, VOLUME/2);
g_mu = g_mu1;
g_mu3 = 0.;
boundary(g_kappa);
if(g_proc_id == 0 && g_debug_level > 3) {
printf("called cloverdet_heatbath for id %d %d\n", id, mnl->even_odd_flag);
}
return;
}
double cloverdet_acc(const int id, hamiltonian_field_t * const hf) {
monomial * mnl = &monomial_list[id];
int save_sloppy = g_sloppy_precision_flag;
g_mu = mnl->mu;
g_mu3 = mnl->rho;
g_c_sw = mnl->c_sw;
boundary(mnl->kappa);
sw_term( (const su3**) hf->gaugefield, mnl->kappa, mnl->c_sw);
sw_invert(EE, mnl->mu);
chrono_guess(g_spinor_field[2], mnl->pf, mnl->csg_field, mnl->csg_index_array,
mnl->csg_N, mnl->csg_n, VOLUME/2, mnl->Qsq);
g_sloppy_precision_flag = 0;
mnl->iter0 = cg_her(g_spinor_field[2], mnl->pf, mnl->maxiter, mnl->accprec,
g_relative_precision_flag, VOLUME/2, mnl->Qsq);
mnl->Qm(g_spinor_field[2], g_spinor_field[2]);
g_sloppy_precision_flag = save_sloppy;
/* Compute the energy contr. from first field */
mnl->energy1 = square_norm(g_spinor_field[2], VOLUME/2, 1);
g_mu = g_mu1;
g_mu3 = 0.;
boundary(g_kappa);
if(g_proc_id == 0 && g_debug_level > 3) {
printf("called cloverdet_acc for id %d %d dH = %1.4e\n",
id, mnl->even_odd_flag, mnl->energy1 - mnl->energy0);
}
return(mnl->energy1 - mnl->energy0);
}