-
Notifications
You must be signed in to change notification settings - Fork 4
/
16D10-DirectProductOfModules.tex
79 lines (73 loc) · 2.03 KB
/
16D10-DirectProductOfModules.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{DirectProductOfModules}
\pmcreated{2013-03-22 12:09:34}
\pmmodified{2013-03-22 12:09:34}
\pmowner{Mathprof}{13753}
\pmmodifier{Mathprof}{13753}
\pmtitle{direct product of modules}
\pmrecord{10}{31357}
\pmprivacy{1}
\pmauthor{Mathprof}{13753}
\pmtype{Definition}
\pmcomment{trigger rebuild}
\pmclassification{msc}{16D10}
\pmsynonym{strong direct sum}{DirectProductOfModules}
\pmsynonym{complete direct sum}{DirectProductOfModules}
\pmrelated{CategoricalDirectProduct}
\pmdefines{direct product}
\endmetadata
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{graphicx}
%%%\usepackage{xypic}
\begin{document}
Let $\{ X_i : i \in I \}$ be a collection of modules
in some category of modules.
Then the {\it direct product} $\prod_{i \in I} X_i$
of that collection is the module
whose underlying set is the Cartesian product of the $X_i$
with componentwise addition and scalar multiplication.
For example, in a category of left modules:
$$(x_i) + (y_i) = (x_i + y_i),$$
$$r (x_i) = (r x_i).$$
For each $j \in I$ we have
a {\it projection} $p_j : \prod_{i \in I} X_i \to X_j$
defined by $(x_i) \mapsto x_j$,
and
an {\it injection} $\lambda_j : X_j \to \prod_{i \in I} X_i$
where an element $x_j$ of $X_j$
maps to the element of $\prod_{i \in I} X_i$
whose $j$th term is $x_j$ and every other term is zero.
The direct product $\prod_{i \in I} X_i$
satisfies a certain universal property.
Namely, if $Y$ is a module
and there exist homomorphisms $f_i : X_i \to Y$
for all $i \in I$,
then there exists a unique homomorphism
$\phi : Y \to \prod_{i \in I} X_i$
satisfying $\phi \lambda_i = f_i$ for all $i \in I$.
$$
\xymatrix{
X_i
\ar[dr]_{\lambda_i}
\ar[rr]^{f_i}
&
&
Y
\ar@{-->}[dl]^{\phi}
\\
&
\prod_{i \in I} X_i
}
$$
The direct product is often referred to
as the {\it complete direct sum},
or the {\it strong direct sum},
or simply the {\PMlinkescapetext {\it product}}.
Compare this to the direct sum of modules.
%%%%%
%%%%%
%%%%%
\end{document}