-
Notifications
You must be signed in to change notification settings - Fork 4
/
16D20-Bimodule.tex
62 lines (53 loc) · 1.79 KB
/
16D20-Bimodule.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{Bimodule}
\pmcreated{2013-03-22 12:01:18}
\pmmodified{2013-03-22 12:01:18}
\pmowner{mps}{409}
\pmmodifier{mps}{409}
\pmtitle{bimodule}
\pmrecord{9}{30987}
\pmprivacy{1}
\pmauthor{mps}{409}
\pmtype{Definition}
\pmcomment{trigger rebuild}
\pmclassification{msc}{16D20}
\pmsynonym{sub-bimodule}{Bimodule}
\pmdefines{subbimodule}
\endmetadata
% this is the default PlanetMath preamble. as your knowledge
% of TeX increases, you will probably want to edit this, but
% it should be fine as is for beginners.
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
% used for TeXing text within eps files
%\usepackage{psfrag}
% need this for including graphics (\includegraphics)
%\usepackage{graphicx}
% for neatly defining theorems and propositions
%\usepackage{amsthm}
% making logically defined graphics
%%%%\usepackage{xypic}
% there are many more packages, add them here as you need them
% define commands here
\newcommand{\opposite}[1]{{#1}^{\,\mathrm{op}}}
\newcommand{\fm}[1]{{\it #1}}
\begin{document}
Let \fm{R} and \fm{S} be rings. An \emph{(\fm{R},\fm{S})-bimodule} is
an abelian group \fm{M} which is a left module over \fm{R} and a right
module over \fm{S} such that the \fm{r}(\fm{ms})=(\fm{rm})\fm{s} holds
for each \fm{r} in \fm{R}, \fm{m} in \fm{M}, and \fm{s} in \fm{S}.
Equivalently, \fm{M} is an (\fm{R},\fm{S})-bimodule if it is a left
module over $R\otimes\opposite{S}$ or a right module over
$\opposite{R}\otimes S$.
When \fm{M} is an (\fm{R},\fm{S})-bimodule, we sometimes indicate this
by writing the module as ${}_RM_S$.
If \fm{P} is a subgroup of \fm{M} which is also an
(\fm{R},\fm{S})-bimodule, then \fm{P} is an
\emph{(\fm{R},\fm{S})-subbimodule} of \fm{M}.
%%%%%
%%%%%
%%%%%
\end{document}