-
Notifications
You must be signed in to change notification settings - Fork 55
/
main_nn.py
executable file
·131 lines (113 loc) · 4.94 KB
/
main_nn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Python version: 3.6
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
import torch.optim as optim
from torchvision import datasets, transforms
from utils.options import args_parser
from models.Nets import MLP, CNNMnist, CNNCifar
def test(net_g, data_loader):
# testing
net_g.eval()
test_loss = 0
correct = 0
l = len(data_loader)
for idx, (data, target) in enumerate(data_loader):
data, target = data.to(args.device), target.to(args.device)
log_probs = net_g(data)
test_loss += F.cross_entropy(log_probs, target).item()
y_pred = log_probs.data.max(1, keepdim=True)[1]
correct += y_pred.eq(target.data.view_as(y_pred)).long().cpu().sum()
test_loss /= len(data_loader.dataset)
test_acc = 100. * float(correct) / len(data_loader.dataset)
if args.verbose:
print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)'.format(
test_loss, correct, len(data_loader.dataset), test_acc))
return test_acc, test_loss
if __name__ == '__main__':
# parse args
args = args_parser()
args.device = torch.device('cuda:{}'.format(args.gpu) if torch.cuda.is_available() and args.gpu != -1 else 'cpu')
torch.manual_seed(args.seed)
# load dataset and split users
if args.dataset == 'mnist':
dataset_train = datasets.MNIST('./data/mnist/', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
]))
img_size = dataset_train[0][0].shape
elif args.dataset == 'cifar':
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
dataset_train = datasets.CIFAR10('./data/cifar', train=True, transform=transform, target_transform=None, download=True)
img_size = dataset_train[0][0].shape
else:
exit('Error: unrecognized dataset')
# testing
if args.dataset == 'mnist':
dataset_test = datasets.MNIST('./data/mnist/', train=False, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
]))
test_loader = DataLoader(dataset_test, batch_size=1000, shuffle=False)
elif args.dataset == 'cifar':
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
dataset_test = datasets.CIFAR10('./data/cifar', train=False, transform=transform, target_transform=None, download=True)
test_loader = DataLoader(dataset_test, batch_size=1000, shuffle=False)
else:
exit('Error: unrecognized dataset')
# build model
if args.model == 'cnn' and args.dataset == 'cifar':
net_glob = CNNCifar(args=args).to(args.device)
elif args.model == 'cnn' and args.dataset == 'mnist':
net_glob = CNNMnist(args=args).to(args.device)
elif args.model == 'mlp':
len_in = 1
for x in img_size:
len_in *= x
net_glob = MLP(dim_in=len_in, dim_hidden=256, dim_out=args.num_classes).to(args.device)
else:
exit('Error: unrecognized model')
print(net_glob)
# training
optimizer = optim.SGD(net_glob.parameters(), lr=args.lr, momentum=args.momentum)
train_loader = DataLoader(dataset_train, batch_size=64, shuffle=True)
list_loss = []
net_glob.train()
for epoch in range(args.epochs):
batch_loss = []
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(args.device), target.to(args.device)
optimizer.zero_grad()
output = net_glob(data)
loss = F.cross_entropy(output, target)
loss.backward()
optimizer.step()
if args.verbose and batch_idx % 50 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
batch_loss.append(loss.item())
loss_avg = sum(batch_loss)/len(batch_loss)
list_loss.append(loss_avg)
test_acc, test_loss = test(net_glob, test_loader)
print('Train Epoch: {}, Train loss: {}, Test loss: {}, Test acc: {}'.format(
epoch, loss_avg, test_loss, test_acc))
# plot loss
plt.figure()
plt.plot(range(len(list_loss)), list_loss)
plt.xlabel('epochs')
plt.ylabel('train loss')
plt.savefig('./log/nn_{}_{}_{}.png'.format(args.dataset, args.model, args.epochs))
print('test on', len(dataset_test), 'samples')
test_acc, test_loss = test(net_glob, test_loader)