jupytext | kernelspec | myst | ||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
|
|
JupySQL also supports DuckDB with a native connection (no SQLAlchemy needed), to learn more, see [the tutorial](../integrations/duckdb-native.md). To learn the differences, [click here.](../tutorials/duckdb-native-sqlalchemy.md)
JupySQL integrates with DuckDB so you can run SQL queries in a Jupyter notebook. Jump into any section to learn more!
+++
%pip install jupysql duckdb duckdb-engine --quiet
%load_ext sql
%sql duckdb://
+++
Get a sample .csv
file:
from urllib.request import urlretrieve
_ = urlretrieve(
"https://raw.githubusercontent.com/mwaskom/seaborn-data/master/penguins.csv",
"penguins.csv",
)
+++
The data from the .csv
file must first be registered as a table in order for the table to be listed.
%%sql
CREATE TABLE penguins AS SELECT * FROM penguins.csv
The cell above allows the data to now be listed as a table from the following code:
%sqlcmd tables
List columns in the penguins table:
%sqlcmd columns -t penguins
%%sql
SELECT *
FROM penguins.csv
LIMIT 3
%%sql
SELECT species, COUNT(*) AS count
FROM penguins.csv
GROUP BY species
ORDER BY count DESC
%%sql species_count <<
SELECT species, COUNT(*) AS count
FROM penguins.csv
GROUP BY species
ORDER BY count DESC
ax = species_count.bar()
# customize plot (this is a matplotlib Axes object)
_ = ax.set_title("Num of penguins by species")
%pip install jupysql duckdb duckdb-engine pyarrow --quiet
%load_ext sql
%sql duckdb://
+++
Get a sample .parquet
file:
from urllib.request import urlretrieve
_ = urlretrieve(
"https://d37ci6vzurychx.cloudfront.net/trip-data/yellow_tripdata_2021-01.parquet",
"yellow_tripdata_2021-01.parquet",
)
+++
Identically, to list the data from a .parquet
file as a table, the data must first be registered as a table.
%%sql
CREATE TABLE tripdata AS SELECT * FROM "yellow_tripdata_2021-01.parquet"
The data is now able to be listed as a table from the following code:
%sqlcmd tables
List columns in the tripdata table:
%sqlcmd columns -t tripdata
%%sql
SELECT tpep_pickup_datetime, tpep_dropoff_datetime, passenger_count
FROM "yellow_tripdata_2021-01.parquet"
LIMIT 3
%%sql
SELECT
passenger_count, AVG(trip_distance) AS avg_trip_distance
FROM "yellow_tripdata_2021-01.parquet"
GROUP BY passenger_count
ORDER BY passenger_count ASC
%%sql avg_trip_distance <<
SELECT
passenger_count, AVG(trip_distance) AS avg_trip_distance
FROM "yellow_tripdata_2021-01.parquet"
GROUP BY passenger_count
ORDER BY passenger_count ASC
ax = avg_trip_distance.plot()
# customize plot (this is a matplotlib Axes object)
_ = ax.set_title("Avg trip distance by num of passengers")
This section demonstrates how we can efficiently plot large datasets with DuckDB and JupySQL without blowing up our machine's memory. %sqlplot
performs all aggregations in DuckDB.
Let's install the required package:
%pip install jupysql duckdb duckdb-engine pyarrow --quiet
Now, we download a sample data: NYC Taxi data split in 3 parquet files:
from pathlib import Path
from urllib.request import urlretrieve
N_MONTHS = 3
# https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
for i in range(1, N_MONTHS + 1):
filename = f"yellow_tripdata_2021-{str(i).zfill(2)}.parquet"
if not Path(filename).is_file():
print(f"Downloading: {filename}")
url = f"https://d37ci6vzurychx.cloudfront.net/trip-data/{filename}"
urlretrieve(url, filename)
In total, this contains more then 4.6M observations:
%%sql
SELECT count(*) FROM 'yellow_tripdata_2021-*.parquet'
Let's use JupySQL to get a histogram of trip_distance
across all 12 files:
%sqlplot histogram --table yellow_tripdata_2021-*.parquet --column trip_distance --bins 50
We have some outliers, let's find the 99th percentile:
%%sql
SELECT percentile_disc(0.99) WITHIN GROUP (ORDER BY trip_distance)
FROM 'yellow_tripdata_2021-*.parquet'
We now write a query to remove everything above that number:
%%sql --save no_outliers --no-execute
SELECT trip_distance
FROM 'yellow_tripdata_2021-*.parquet'
WHERE trip_distance < 18.93
%sqlplot histogram --table no_outliers --column trip_distance --bins 50
%sqlplot boxplot --table no_outliers --column trip_distance
import pandas as pd
from sqlalchemy import create_engine
engine = create_engine("duckdb:///:memory:")
df = pd.DataFrame({"x": range(100)})
%sql engine
If you're using DuckDB 1.1.0 or higher, you must run this before querying a data frame
~~~sql
%sql SET python_scan_all_frames=true
~~~
%%sql
SELECT *
FROM df
WHERE x > 95
from sqlalchemy import create_engine
some_engine = create_engine(
"duckdb:///:memory:",
connect_args={
"preload_extensions": [],
},
)
%sql some_engine