-
Notifications
You must be signed in to change notification settings - Fork 0
/
extract_d2_net.py
222 lines (179 loc) · 6.96 KB
/
extract_d2_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import os
import sys
sys.path.append(os.path.join('third_party', 'd2_net'))
import argparse
import numpy as np
import scipy
import scipy.misc
import torch
from pyquaternion import Quaternion
from tqdm import tqdm
import cv2
from utils import load_image, estimate_pose_PnPRansac, load_calibration
from third_party.d2_net.lib.model_test import D2Net
from third_party.d2_net.lib.utils import preprocess_image
from third_party.d2_net.lib.pyramid import process_multiscale
# Based on third_party/d2_net/extract_features.py
def extract_features_d2(model, image, multiscale):
if len(image.shape) == 2:
image = image[:, :, np.newaxis]
image = np.repeat(image, 3, -1)
# TODO: switch to PIL.Image due to deprecation of scipy.misc.imresize.
resized_image = image
if max(resized_image.shape) > args.max_edge:
resized_image = scipy.misc.imresize(
resized_image,
args.max_edge / max(resized_image.shape)
).astype('float')
if sum(resized_image.shape[: 2]) > args.max_sum_edges:
resized_image = scipy.misc.imresize(
resized_image,
args.max_sum_edges / sum(resized_image.shape[: 2])
).astype('float')
fact_i = image.shape[0] / resized_image.shape[0]
fact_j = image.shape[1] / resized_image.shape[1]
input_image = preprocess_image(
resized_image,
preprocessing=args.preprocessing
)
# Remove gray scale mean
mean_gray = np.array([114.81, 114.81, 114.81])
input_image = input_image - mean_gray.reshape([3, 1, 1])
with torch.no_grad():
if multiscale:
keypoints, scores, descriptors = process_multiscale(
torch.tensor(
input_image[np.newaxis, :, :, :].astype(np.float32),
device=device
),
model
)
else:
keypoints, scores, descriptors = process_multiscale(
torch.tensor(
input_image[np.newaxis, :, :, :].astype(np.float32),
device=device
),
model,
scales=[1]
)
# Input image coordinates
keypoints[:, 0] *= fact_i
keypoints[:, 1] *= fact_j
# i, j -> u, v
keypoints = keypoints[:, [1, 0, 2]]
# sort according to scores
idxs = scores.argsort()[::-1]
return keypoints[idxs], scores[idxs], descriptors[idxs]
# CUDA
use_cuda = torch.cuda.is_available()
device = torch.device("cuda:0" if use_cuda else "cpu")
torch.backends.cudnn.benchmark = True # speedup
# Argument parsing
parser = argparse.ArgumentParser(description='Feature extraction script')
parser.add_argument(
'--preprocessing', type=str, default=None,
help='image preprocessing (caffe or torch)'
)
parser.add_argument(
'--model_file', type=str, default=os.path.join(
'third_party', 'd2_net', 'models', 'd2_tf.pth'),
help='path to the full model'
)
parser.add_argument(
'--max_edge', type=int, default=1600,
help='maximum image size at network input'
)
parser.add_argument(
'--max_sum_edges', type=int, default=2800,
help='maximum sum of image sizes at network input'
)
parser.add_argument(
'--multiscale', dest='multiscale', action='store_true',
help='extract multiscale features'
)
parser.set_defaults(multiscale=False)
parser.add_argument(
'--no-relu', dest='use_relu', action='store_false',
help='remove ReLU after the dense feature extraction module'
)
parser.add_argument(
'--dataset-path', type=str, required=True,
help='path to dataset.'
)
parser.add_argument(
'--output-path', type=str, required=True,
help='path to save the results.'
)
parser.add_argument(
'--test-sequence', type=int, default=0,
help='test sequence, select either 0 or 1'
)
parser.set_defaults(use_relu=True)
args = parser.parse_args()
print(args)
# Creating CNN model
model = D2Net(
model_file=args.model_file,
use_relu=args.use_relu,
use_cuda=use_cuda
)
# source sequence
source_seq = 'recording_2020-04-07_10-20-32'
if args.test_sequence == 0:
target_seq = 'recording_2020-03-24_17-45-31' # test_sequence0
elif args.test_sequence == 1:
target_seq = 'recording_2020-04-23_19-37-00' # test_sequence1
else:
exit('Test sequence can either be 0 or 1.')
tasks = ['easy', 'moderate', 'hard']
# check if output folder exists
if not os.path.isdir(args.output_path):
os.makedirs(args.output_path)
# folder source
folder_source = os.path.join(args.dataset_path, source_seq)
# folder target
folder_target = os.path.join(args.dataset_path, target_seq)
# initialize bf_matcher object
bf_matcher = cv2.BFMatcher(normType=cv2.NORM_L2, crossCheck=True)
# initialize stereoBM object
stereo = cv2.StereoBM_create(numDisparities=32, blockSize=15)
# load camMatrix and baseline
camMatrix, baseline = load_calibration(os.path.join(folder_source, 'Calibration'))
for tsk in tasks:
# reloc file
reloc_file = os.path.join(args.dataset_path, source_seq, 'RelocalizationFilesTest',
'relocalizationFile_' + target_seq + '_' + tsk + '.txt')
# Result file
reloc_result = open(
os.path.join(args.output_path, 'relocalizationResult_d2_net_eccv-challenge-' + target_seq + '_' + tsk + '.txt'),
'w')
# Process the file
with open(reloc_file, 'r') as f:
lines = f.readlines()
lines = [l for l in lines if not l.startswith('#')]
for line in tqdm(lines, total=len(lines)):
l = line.rstrip().split(" ")
img_source_cam0_path = os.path.join(folder_source, 'undistorted_images/cam0', l[0] + '.png')
img_source_cam1_path = os.path.join(folder_source, 'undistorted_images/cam1', l[0] + '.png')
img_target_cam0_path = os.path.join(folder_target, 'undistorted_images/cam0', l[1] + '.png')
# load images
img_source_cam0 = load_image(img_source_cam0_path)
img_source_cam1 = load_image(img_source_cam1_path)
img_target_cam0 = load_image(img_target_cam0_path)
# estimate disparity
disparity = stereo.compute(img_source_cam0, img_source_cam1).astype(np.float32) / 16.0
keypoints0, _, descriptors0 = extract_features_d2(model, img_source_cam0, args.multiscale)
keypoints1, _, descriptors1 = extract_features_d2(model, img_target_cam0, args.multiscale)
# match descriptors
matches = bf_matcher.match(descriptors0, descriptors1)
# estimate pose
translation, rot_matrix = estimate_pose_PnPRansac(keypoints0, keypoints1, matches, disparity, camMatrix,
baseline)
# pyquaternion uses w, x, y, z
quaternion = Quaternion(matrix=rot_matrix)
reloc_result.write(
str(l[0]) + ' ' + str(l[1]) + ' ' + str(translation.squeeze()[0]) + ' ' + str(
translation.squeeze()[1]) + ' ' + str(translation.squeeze()[2]) + ' ' +
str(quaternion[1]) + ' ' + str(quaternion[2]) + ' ' + str(quaternion[3]) + ' ' + str(
quaternion[0]) + '\n')