-
Notifications
You must be signed in to change notification settings - Fork 78
/
Copy pathADV_Samples.py
287 lines (256 loc) · 13 KB
/
ADV_Samples.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
"""
Created on Sun Oct 25 2018
@author: Kimin Lee
"""
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import data_loader
import numpy as np
import models
import os
import lib.adversary as adversary
from torchvision import transforms
from torch.autograd import Variable
parser = argparse.ArgumentParser(description='PyTorch code: Mahalanobis detector')
parser.add_argument('--batch_size', type=int, default=200, metavar='N', help='batch size for data loader')
parser.add_argument('--dataset', required=True, help='cifar10 | cifar100 | svhn')
parser.add_argument('--dataroot', default='./data', help='path to dataset')
parser.add_argument('--outf', default='./adv_output/', help='folder to output results')
parser.add_argument('--num_classes', type=int, default=10, help='the # of classes')
parser.add_argument('--net_type', required=True, help='resnet | densenet')
parser.add_argument('--gpu', type=int, default=0, help='gpu index')
parser.add_argument('--adv_type', required=True, help='FGSM | BIM | DeepFool | CWL2')
args = parser.parse_args()
print(args)
def main():
# set the path to pre-trained model and output
pre_trained_net = './pre_trained/' + args.net_type + '_' + args.dataset + '.pth'
args.outf = args.outf + args.net_type + '_' + args.dataset + '/'
if os.path.isdir(args.outf) == False:
os.mkdir(args.outf)
torch.cuda.manual_seed(0)
torch.cuda.set_device(args.gpu)
# check the in-distribution dataset
if args.dataset == 'cifar100':
args.num_classes = 100
if args.adv_type == 'FGSM':
adv_noise = 0.05
elif args.adv_type == 'BIM':
adv_noise = 0.01
elif args.adv_type == 'DeepFool':
if args.net_type == 'resnet':
if args.dataset == 'cifar10':
adv_noise = 0.18
elif args.dataset == 'cifar100':
adv_noise = 0.03
else:
adv_noise = 0.1
else:
if args.dataset == 'cifar10':
adv_noise = 0.6
elif args.dataset == 'cifar100':
adv_noise = 0.1
else:
adv_noise = 0.5
# load networks
if args.net_type == 'densenet':
if args.dataset == 'svhn':
model = models.DenseNet3(100, int(args.num_classes))
model.load_state_dict(torch.load(pre_trained_net, map_location = "cuda:" + str(args.gpu)))
else:
model = torch.load(pre_trained_net, map_location = "cuda:" + str(args.gpu))
in_transform = transforms.Compose([transforms.ToTensor(), \
transforms.Normalize((125.3/255, 123.0/255, 113.9/255), \
(63.0/255, 62.1/255.0, 66.7/255.0)),])
min_pixel = -1.98888885975
max_pixel = 2.12560367584
if args.dataset == 'cifar10':
if args.adv_type == 'FGSM':
random_noise_size = 0.21 / 4
elif args.adv_type == 'BIM':
random_noise_size = 0.21 / 4
elif args.adv_type == 'DeepFool':
random_noise_size = 0.13 * 2 / 10
elif args.adv_type == 'CWL2':
random_noise_size = 0.03 / 2
elif args.dataset == 'cifar100':
if args.adv_type == 'FGSM':
random_noise_size = 0.21 / 8
elif args.adv_type == 'BIM':
random_noise_size = 0.21 / 8
elif args.adv_type == 'DeepFool':
random_noise_size = 0.13 * 2 / 8
elif args.adv_type == 'CWL2':
random_noise_size = 0.06 / 5
else:
if args.adv_type == 'FGSM':
random_noise_size = 0.21 / 4
elif args.adv_type == 'BIM':
random_noise_size = 0.21 / 4
elif args.adv_type == 'DeepFool':
random_noise_size = 0.16 * 2 / 5
elif args.adv_type == 'CWL2':
random_noise_size = 0.07 / 2
elif args.net_type == 'resnet':
model = models.ResNet34(num_c=args.num_classes)
model.load_state_dict(torch.load(pre_trained_net, map_location = "cuda:" + str(args.gpu)))
in_transform = transforms.Compose([transforms.ToTensor(), \
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),])
min_pixel = -2.42906570435
max_pixel = 2.75373125076
if args.dataset == 'cifar10':
if args.adv_type == 'FGSM':
random_noise_size = 0.25 / 4
elif args.adv_type == 'BIM':
random_noise_size = 0.13 / 2
elif args.adv_type == 'DeepFool':
random_noise_size = 0.25 / 4
elif args.adv_type == 'CWL2':
random_noise_size = 0.05 / 2
elif args.dataset == 'cifar100':
if args.adv_type == 'FGSM':
random_noise_size = 0.25 / 8
elif args.adv_type == 'BIM':
random_noise_size = 0.13 / 4
elif args.adv_type == 'DeepFool':
random_noise_size = 0.13 / 4
elif args.adv_type == 'CWL2':
random_noise_size = 0.05 / 2
else:
if args.adv_type == 'FGSM':
random_noise_size = 0.25 / 4
elif args.adv_type == 'BIM':
random_noise_size = 0.13 / 2
elif args.adv_type == 'DeepFool':
random_noise_size = 0.126
elif args.adv_type == 'CWL2':
random_noise_size = 0.05 / 1
model.cuda()
print('load model: ' + args.net_type)
# load dataset
print('load target data: ', args.dataset)
_, test_loader = data_loader.getTargetDataSet(args.dataset, args.batch_size, in_transform, args.dataroot)
print('Attack: ' + args.adv_type + ', Dist: ' + args.dataset + '\n')
model.eval()
adv_data_tot, clean_data_tot, noisy_data_tot = 0, 0, 0
label_tot = 0
correct, adv_correct, noise_correct = 0, 0, 0
total, generated_noise = 0, 0
criterion = nn.CrossEntropyLoss().cuda()
selected_list = []
selected_index = 0
for data, target in test_loader:
data, target = data.cuda(), target.cuda()
data, target = Variable(data, volatile=True), Variable(target)
output = model(data)
# compute the accuracy
pred = output.data.max(1)[1]
equal_flag = pred.eq(target.data).cpu()
correct += equal_flag.sum()
noisy_data = torch.add(data.data, random_noise_size, torch.randn(data.size()).cuda())
noisy_data = torch.clamp(noisy_data, min_pixel, max_pixel)
if total == 0:
clean_data_tot = data.clone().data.cpu()
label_tot = target.clone().data.cpu()
noisy_data_tot = noisy_data.clone().cpu()
else:
clean_data_tot = torch.cat((clean_data_tot, data.clone().data.cpu()),0)
label_tot = torch.cat((label_tot, target.clone().data.cpu()), 0)
noisy_data_tot = torch.cat((noisy_data_tot, noisy_data.clone().cpu()),0)
# generate adversarial
model.zero_grad()
inputs = Variable(data.data, requires_grad=True)
output = model(inputs)
loss = criterion(output, target)
loss.backward()
if args.adv_type == 'FGSM':
gradient = torch.ge(inputs.grad.data, 0)
gradient = (gradient.float()-0.5)*2
if args.net_type == 'densenet':
gradient.index_copy_(1, torch.LongTensor([0]).cuda(), \
gradient.index_select(1, torch.LongTensor([0]).cuda()) / (63.0/255.0))
gradient.index_copy_(1, torch.LongTensor([1]).cuda(), \
gradient.index_select(1, torch.LongTensor([1]).cuda()) / (62.1/255.0))
gradient.index_copy_(1, torch.LongTensor([2]).cuda(), \
gradient.index_select(1, torch.LongTensor([2]).cuda()) / (66.7/255.0))
else:
gradient.index_copy_(1, torch.LongTensor([0]).cuda(), \
gradient.index_select(1, torch.LongTensor([0]).cuda()) / (0.2023))
gradient.index_copy_(1, torch.LongTensor([1]).cuda(), \
gradient.index_select(1, torch.LongTensor([1]).cuda()) / (0.1994))
gradient.index_copy_(1, torch.LongTensor([2]).cuda(), \
gradient.index_select(1, torch.LongTensor([2]).cuda()) / (0.2010))
elif args.adv_type == 'BIM':
gradient = torch.sign(inputs.grad.data)
for k in range(5):
inputs = torch.add(inputs.data, adv_noise, gradient)
inputs = torch.clamp(inputs, min_pixel, max_pixel)
inputs = Variable(inputs, requires_grad=True)
output = model(inputs)
loss = criterion(output, target)
loss.backward()
gradient = torch.sign(inputs.grad.data)
if args.net_type == 'densenet':
gradient.index_copy_(1, torch.LongTensor([0]).cuda(), \
gradient.index_select(1, torch.LongTensor([0]).cuda()) / (63.0/255.0))
gradient.index_copy_(1, torch.LongTensor([1]).cuda(), \
gradient.index_select(1, torch.LongTensor([1]).cuda()) / (62.1/255.0))
gradient.index_copy_(1, torch.LongTensor([2]).cuda(), \
gradient.index_select(1, torch.LongTensor([2]).cuda()) / (66.7/255.0))
else:
gradient.index_copy_(1, torch.LongTensor([0]).cuda(), \
gradient.index_select(1, torch.LongTensor([0]).cuda()) / (0.2023))
gradient.index_copy_(1, torch.LongTensor([1]).cuda(), \
gradient.index_select(1, torch.LongTensor([1]).cuda()) / (0.1994))
gradient.index_copy_(1, torch.LongTensor([2]).cuda(), \
gradient.index_select(1, torch.LongTensor([2]).cuda()) / (0.2010))
if args.adv_type == 'DeepFool':
_, adv_data = adversary.deepfool(model, data.data.clone(), target.data.cpu(), \
args.num_classes, step_size=adv_noise, train_mode=False)
adv_data = adv_data.cuda()
elif args.adv_type == 'CWL2':
_, adv_data = adversary.cw(model, data.data.clone(), target.data.cpu(), 1.0, 'l2', crop_frac=1.0)
else:
adv_data = torch.add(inputs.data, adv_noise, gradient)
adv_data = torch.clamp(adv_data, min_pixel, max_pixel)
# measure the noise
temp_noise_max = torch.abs((data.data - adv_data).view(adv_data.size(0), -1))
temp_noise_max, _ = torch.max(temp_noise_max, dim=1)
generated_noise += torch.sum(temp_noise_max)
if total == 0:
flag = 1
adv_data_tot = adv_data.clone().cpu()
else:
adv_data_tot = torch.cat((adv_data_tot, adv_data.clone().cpu()),0)
output = model(Variable(adv_data, volatile=True))
# compute the accuracy
pred = output.data.max(1)[1]
equal_flag_adv = pred.eq(target.data).cpu()
adv_correct += equal_flag_adv.sum()
output = model(Variable(noisy_data, volatile=True))
# compute the accuracy
pred = output.data.max(1)[1]
equal_flag_noise = pred.eq(target.data).cpu()
noise_correct += equal_flag_noise.sum()
for i in range(data.size(0)):
if equal_flag[i] == 1 and equal_flag_noise[i] == 1 and equal_flag_adv[i] == 0:
selected_list.append(selected_index)
selected_index += 1
total += data.size(0)
selected_list = torch.LongTensor(selected_list)
clean_data_tot = torch.index_select(clean_data_tot, 0, selected_list)
adv_data_tot = torch.index_select(adv_data_tot, 0, selected_list)
noisy_data_tot = torch.index_select(noisy_data_tot, 0, selected_list)
label_tot = torch.index_select(label_tot, 0, selected_list)
torch.save(clean_data_tot, '%s/clean_data_%s_%s_%s.pth' % (args.outf, args.net_type, args.dataset, args.adv_type))
torch.save(adv_data_tot, '%s/adv_data_%s_%s_%s.pth' % (args.outf, args.net_type, args.dataset, args.adv_type))
torch.save(noisy_data_tot, '%s/noisy_data_%s_%s_%s.pth' % (args.outf, args.net_type, args.dataset, args.adv_type))
torch.save(label_tot, '%s/label_%s_%s_%s.pth' % (args.outf, args.net_type, args.dataset, args.adv_type))
print('Adversarial Noise:({:.2f})\n'.format(generated_noise / total))
print('Final Accuracy: {}/{} ({:.2f}%)\n'.format(correct, total, 100. * correct / total))
print('Adversarial Accuracy: {}/{} ({:.2f}%)\n'.format(adv_correct, total, 100. * adv_correct / total))
print('Noisy Accuracy: {}/{} ({:.2f}%)\n'.format(noise_correct, total, 100. * noise_correct / total))
if __name__ == '__main__':
main()