-
-
Notifications
You must be signed in to change notification settings - Fork 2.1k
/
Copy pathapply.rs
644 lines (582 loc) · 23.2 KB
/
apply.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
use std::borrow::Cow;
use polars_core::prelude::*;
use polars_core::POOL;
#[cfg(feature = "parquet")]
use polars_io::predicates::{BatchStats, StatsEvaluator};
#[cfg(feature = "is_between")]
use polars_ops::prelude::ClosedInterval;
use rayon::prelude::*;
use crate::physical_plan::state::ExecutionState;
use crate::prelude::*;
pub struct ApplyExpr {
inputs: Vec<Arc<dyn PhysicalExpr>>,
function: SpecialEq<Arc<dyn SeriesUdf>>,
expr: Expr,
collect_groups: ApplyOptions,
returns_scalar: bool,
allow_rename: bool,
pass_name_to_apply: bool,
input_schema: Option<SchemaRef>,
allow_threading: bool,
check_lengths: bool,
allow_group_aware: bool,
}
impl ApplyExpr {
pub(crate) fn new(
inputs: Vec<Arc<dyn PhysicalExpr>>,
function: SpecialEq<Arc<dyn SeriesUdf>>,
expr: Expr,
options: FunctionOptions,
allow_threading: bool,
input_schema: Option<SchemaRef>,
) -> Self {
#[cfg(debug_assertions)]
if matches!(options.collect_groups, ApplyOptions::ElementWise) && options.returns_scalar {
panic!("expr {} is not implemented correctly. 'returns_scalar' and 'elementwise' are mutually exclusive", expr)
}
Self {
inputs,
function,
expr,
collect_groups: options.collect_groups,
returns_scalar: options.returns_scalar,
allow_rename: options.allow_rename,
pass_name_to_apply: options.pass_name_to_apply,
input_schema,
allow_threading,
check_lengths: options.check_lengths(),
allow_group_aware: options.allow_group_aware,
}
}
pub(crate) fn new_minimal(
inputs: Vec<Arc<dyn PhysicalExpr>>,
function: SpecialEq<Arc<dyn SeriesUdf>>,
expr: Expr,
collect_groups: ApplyOptions,
) -> Self {
Self {
inputs,
function,
expr,
collect_groups,
returns_scalar: false,
allow_rename: false,
pass_name_to_apply: false,
input_schema: None,
allow_threading: true,
check_lengths: true,
allow_group_aware: true,
}
}
#[allow(clippy::ptr_arg)]
fn prepare_multiple_inputs<'a>(
&self,
df: &DataFrame,
groups: &'a GroupsProxy,
state: &ExecutionState,
) -> PolarsResult<Vec<AggregationContext<'a>>> {
let f = |e: &Arc<dyn PhysicalExpr>| e.evaluate_on_groups(df, groups, state);
if self.allow_threading {
POOL.install(|| self.inputs.par_iter().map(f).collect())
} else {
self.inputs.iter().map(f).collect()
}
}
fn finish_apply_groups<'a>(
&self,
mut ac: AggregationContext<'a>,
ca: ListChunked,
) -> PolarsResult<AggregationContext<'a>> {
let all_unit_len = all_unit_length(&ca);
if all_unit_len && self.returns_scalar {
ac.with_agg_state(AggState::AggregatedScalar(
ca.explode().unwrap().into_series(),
));
ac.with_update_groups(UpdateGroups::No);
} else {
ac.with_series(ca.into_series(), true, Some(&self.expr))?;
ac.with_update_groups(UpdateGroups::WithSeriesLen);
}
Ok(ac)
}
fn get_input_schema(&self, df: &DataFrame) -> Cow<Schema> {
match &self.input_schema {
Some(schema) => Cow::Borrowed(schema.as_ref()),
None => Cow::Owned(df.schema()),
}
}
/// Evaluates and flattens `Option<Series>` to `Series`.
fn eval_and_flatten(&self, inputs: &mut [Series]) -> PolarsResult<Series> {
if let Some(out) = self.function.call_udf(inputs)? {
Ok(out)
} else {
let field = self.to_field(self.input_schema.as_ref().unwrap()).unwrap();
Ok(Series::full_null(field.name(), 1, field.data_type()))
}
}
fn apply_single_group_aware<'a>(
&self,
mut ac: AggregationContext<'a>,
) -> PolarsResult<AggregationContext<'a>> {
let s = ac.series();
polars_ensure!(
!matches!(ac.agg_state(), AggState::AggregatedScalar(_)),
expr = self.expr,
ComputeError: "cannot aggregate, the column is already aggregated",
);
let name = s.name().to_string();
let agg = ac.aggregated();
// Collection of empty list leads to a null dtype. See: #3687.
if agg.len() == 0 {
// Create input for the function to determine the output dtype, see #3946.
let agg = agg.list().unwrap();
let input_dtype = agg.inner_dtype();
let input = Series::full_null("", 0, &input_dtype);
let output = self.eval_and_flatten(&mut [input])?;
let ca = ListChunked::full(&name, &output, 0);
return self.finish_apply_groups(ac, ca);
}
let f = |opt_s: Option<Series>| match opt_s {
None => Ok(None),
Some(mut s) => {
if self.pass_name_to_apply {
s.rename(&name);
}
self.function.call_udf(&mut [s])
},
};
let ca: ListChunked = if self.allow_threading {
POOL.install(|| {
agg.list()
.unwrap()
.par_iter()
.map(f)
.collect::<PolarsResult<_>>()
})?
} else {
agg.list()
.unwrap()
.into_iter()
.map(f)
.collect::<PolarsResult<_>>()?
};
self.finish_apply_groups(ac, ca.with_name(&name))
}
/// Apply elementwise e.g. ignore the group/list indices.
fn apply_single_elementwise<'a>(
&self,
mut ac: AggregationContext<'a>,
) -> PolarsResult<AggregationContext<'a>> {
let (s, aggregated) = match ac.agg_state() {
AggState::AggregatedList(s) => {
let ca = s.list().unwrap();
let out = ca.apply_to_inner(&|s| self.eval_and_flatten(&mut [s]))?;
(out.into_series(), true)
},
AggState::NotAggregated(s) => {
let (out, aggregated) = (self.eval_and_flatten(&mut [s.clone()])?, false);
check_map_output_len(s.len(), out.len(), &self.expr)?;
(out, aggregated)
},
agg_state => {
ac.with_agg_state(agg_state.try_map(|s| self.eval_and_flatten(&mut [s.clone()]))?);
return Ok(ac);
},
};
ac.with_series_and_args(s, aggregated, Some(&self.expr), true)?;
Ok(ac)
}
fn apply_multiple_group_aware<'a>(
&self,
mut acs: Vec<AggregationContext<'a>>,
df: &DataFrame,
) -> PolarsResult<AggregationContext<'a>> {
let mut container = vec![Default::default(); acs.len()];
let schema = self.get_input_schema(df);
let field = self.to_field(&schema)?;
// Aggregate representation of the aggregation contexts,
// then unpack the lists and finally create iterators from this list chunked arrays.
let mut iters = acs
.iter_mut()
.map(|ac|
// SAFETY: unstable series never lives longer than the iterator.
unsafe { ac.iter_groups(self.pass_name_to_apply) })
.collect::<Vec<_>>();
// Length of the items to iterate over.
let len = iters[0].size_hint().0;
if len == 0 {
drop(iters);
// Take the first aggregation context that as that is the input series.
let mut ac = acs.swap_remove(0);
ac.with_update_groups(UpdateGroups::No);
let agg_state = if self.returns_scalar {
AggState::AggregatedScalar(Series::new_empty(field.name(), &field.dtype))
} else {
match self.collect_groups {
ApplyOptions::ElementWise | ApplyOptions::ApplyList => ac
.agg_state()
.map(|_| Series::new_empty(field.name(), &field.dtype)),
ApplyOptions::GroupWise => AggState::AggregatedList(Series::new_empty(
field.name(),
&DataType::List(Box::new(field.dtype.clone())),
)),
}
};
ac.with_agg_state(agg_state);
return Ok(ac);
}
let ca = (0..len)
.map(|_| {
container.clear();
for iter in &mut iters {
match iter.next().unwrap() {
None => return Ok(None),
Some(s) => container.push(s.deep_clone()),
}
}
self.function.call_udf(&mut container)
})
.collect::<PolarsResult<ListChunked>>()?
.with_name(&field.name);
drop(iters);
// Take the first aggregation context that as that is the input series.
let ac = acs.swap_remove(0);
self.finish_apply_groups(ac, ca)
}
}
fn all_unit_length(ca: &ListChunked) -> bool {
assert_eq!(ca.chunks().len(), 1);
let list_arr = ca.downcast_iter().next().unwrap();
let offset = list_arr.offsets().as_slice();
(offset[offset.len() - 1] as usize) == list_arr.len()
}
fn check_map_output_len(input_len: usize, output_len: usize, expr: &Expr) -> PolarsResult<()> {
polars_ensure!(
input_len == output_len, expr = expr, InvalidOperation:
"output length of `map` ({}) must be equal to the input length ({}); \
consider using `apply` instead", output_len, input_len
);
Ok(())
}
impl PhysicalExpr for ApplyExpr {
fn as_expression(&self) -> Option<&Expr> {
Some(&self.expr)
}
fn evaluate(&self, df: &DataFrame, state: &ExecutionState) -> PolarsResult<Series> {
let f = |e: &Arc<dyn PhysicalExpr>| e.evaluate(df, state);
let mut inputs = if self.allow_threading && self.inputs.len() > 1 {
POOL.install(|| {
self.inputs
.par_iter()
.map(f)
.collect::<PolarsResult<Vec<_>>>()
})
} else {
self.inputs.iter().map(f).collect::<PolarsResult<Vec<_>>>()
}?;
if self.allow_rename {
self.eval_and_flatten(&mut inputs)
} else {
let in_name = inputs[0].name().to_string();
Ok(self.eval_and_flatten(&mut inputs)?.with_name(&in_name))
}
}
#[allow(clippy::ptr_arg)]
fn evaluate_on_groups<'a>(
&self,
df: &DataFrame,
groups: &'a GroupsProxy,
state: &ExecutionState,
) -> PolarsResult<AggregationContext<'a>> {
polars_ensure!(
self.allow_group_aware,
expr = self.expr,
ComputeError: "this expression cannot run in the group_by context",
);
if self.inputs.len() == 1 {
let mut ac = self.inputs[0].evaluate_on_groups(df, groups, state)?;
match self.collect_groups {
ApplyOptions::ApplyList => {
let s = self.eval_and_flatten(&mut [ac.aggregated()])?;
ac.with_series(s, true, Some(&self.expr))?;
Ok(ac)
},
ApplyOptions::GroupWise => self.apply_single_group_aware(ac),
ApplyOptions::ElementWise => self.apply_single_elementwise(ac),
}
} else {
let mut acs = self.prepare_multiple_inputs(df, groups, state)?;
match self.collect_groups {
ApplyOptions::ApplyList => {
let mut s = acs.iter_mut().map(|ac| ac.aggregated()).collect::<Vec<_>>();
let s = self.eval_and_flatten(&mut s)?;
// take the first aggregation context that as that is the input series
let mut ac = acs.swap_remove(0);
ac.with_update_groups(UpdateGroups::WithGroupsLen);
ac.with_series(s, true, Some(&self.expr))?;
Ok(ac)
},
ApplyOptions::GroupWise => self.apply_multiple_group_aware(acs, df),
ApplyOptions::ElementWise => {
let mut has_agg_list = false;
let mut has_agg_scalar = false;
let mut has_not_agg = false;
for ac in &acs {
match ac.state {
AggState::AggregatedList(_) => has_agg_list = true,
AggState::AggregatedScalar(_) => has_agg_scalar = true,
AggState::NotAggregated(_) => has_not_agg = true,
_ => {},
}
}
if has_agg_list || (has_agg_scalar && has_not_agg) {
return self.apply_multiple_group_aware(acs, df);
} else {
apply_multiple_elementwise(
acs,
self.function.as_ref(),
&self.expr,
self.check_lengths,
)
}
},
}
}
}
fn to_field(&self, input_schema: &Schema) -> PolarsResult<Field> {
self.expr.to_field(input_schema, Context::Default)
}
#[cfg(feature = "parquet")]
fn as_stats_evaluator(&self) -> Option<&dyn polars_io::predicates::StatsEvaluator> {
let function = match &self.expr {
Expr::Function { function, .. } => function,
_ => return None,
};
match function {
FunctionExpr::Boolean(BooleanFunction::IsNull) => Some(self),
#[cfg(feature = "is_in")]
FunctionExpr::Boolean(BooleanFunction::IsIn) => Some(self),
#[cfg(feature = "is_between")]
FunctionExpr::Boolean(BooleanFunction::IsBetween { closed: _ }) => Some(self),
FunctionExpr::Boolean(BooleanFunction::IsNotNull) => Some(self),
_ => None,
}
}
fn as_partitioned_aggregator(&self) -> Option<&dyn PartitionedAggregation> {
if self.inputs.len() == 1 && matches!(self.collect_groups, ApplyOptions::ElementWise) {
Some(self)
} else {
None
}
}
}
fn apply_multiple_elementwise<'a>(
mut acs: Vec<AggregationContext<'a>>,
function: &dyn SeriesUdf,
expr: &Expr,
check_lengths: bool,
) -> PolarsResult<AggregationContext<'a>> {
match acs.first().unwrap().agg_state() {
// A fast path that doesn't drop groups of the first arg.
// This doesn't require group re-computation.
AggState::AggregatedList(s) => {
let ca = s.list().unwrap();
let other = acs[1..]
.iter()
.map(|ac| ac.flat_naive().into_owned())
.collect::<Vec<_>>();
let out = ca.apply_to_inner(&|s| {
let mut args = Vec::with_capacity(other.len() + 1);
args.push(s);
args.extend_from_slice(&other);
Ok(function.call_udf(&mut args)?.unwrap())
})?;
let mut ac = acs.swap_remove(0);
ac.with_series(out.into_series(), true, None)?;
Ok(ac)
},
first_as => {
let check_lengths = check_lengths && !matches!(first_as, AggState::Literal(_));
let aggregated = acs.iter().all(|ac| ac.is_aggregated() | ac.is_literal());
let mut s = acs
.iter_mut()
.enumerate()
.map(|(i, ac)| {
// Make sure the groups are updated because we are about to throw away
// the series length information, only on the first iteration.
if let (0, UpdateGroups::WithSeriesLen) = (i, &ac.update_groups) {
ac.groups();
}
ac.flat_naive().into_owned()
})
.collect::<Vec<_>>();
let input_len = s[0].len();
let s = function.call_udf(&mut s)?.unwrap();
if check_lengths {
check_map_output_len(input_len, s.len(), expr)?;
}
// Take the first aggregation context that as that is the input series.
let mut ac = acs.swap_remove(0);
ac.with_series_and_args(s, aggregated, None, true)?;
Ok(ac)
},
}
}
#[cfg(feature = "parquet")]
impl StatsEvaluator for ApplyExpr {
fn should_read(&self, stats: &BatchStats) -> PolarsResult<bool> {
let read = self.should_read_impl(stats)?;
if ExecutionState::new().verbose() {
if read {
eprintln!("parquet file must be read, statistics not sufficient for predicate.")
} else {
eprintln!("parquet file can be skipped, the statistics were sufficient to apply the predicate.")
}
}
Ok(read)
}
}
#[cfg(feature = "parquet")]
impl ApplyExpr {
fn should_read_impl(&self, stats: &BatchStats) -> PolarsResult<bool> {
let (function, input) = match &self.expr {
Expr::Function {
function, input, ..
} => (function, input),
_ => return Ok(true),
};
// Ensure the input of the function is only a `col(..)`.
// If it does any arithmetic the code below is flawed.
if !matches!(input[0], Expr::Column(_)) {
return Ok(true);
}
match function {
FunctionExpr::Boolean(BooleanFunction::IsNull) => {
let root = expr_to_leaf_column_name(&self.expr)?;
match stats.get_stats(&root).ok() {
Some(st) => match st.null_count() {
Some(0) => Ok(false),
_ => Ok(true),
},
None => Ok(true),
}
},
FunctionExpr::Boolean(BooleanFunction::IsNotNull) => {
let root = expr_to_leaf_column_name(&self.expr)?;
match stats.get_stats(&root).ok() {
Some(st) => match st.null_count() {
Some(null_count)
if stats
.num_rows()
.map_or(false, |num_rows| num_rows == null_count) =>
{
Ok(false)
},
_ => Ok(true),
},
None => Ok(true),
}
},
#[cfg(feature = "is_in")]
FunctionExpr::Boolean(BooleanFunction::IsIn) => {
let should_read = || -> Option<bool> {
let root = expr_to_leaf_column_name(&input[0]).ok()?;
let Expr::Literal(LiteralValue::Series(input)) = &input[1] else {
return None;
};
#[allow(clippy::explicit_auto_deref)]
let input: &Series = &**input;
let st = stats.get_stats(&root).ok()?;
let min = st.to_min()?;
let max = st.to_max()?;
if max.get(0).unwrap() == min.get(0).unwrap() {
let one_equals =
|value: &Series| Some(ChunkCompare::equal(input, value).ok()?.any());
return one_equals(min);
}
let smaller = ChunkCompare::lt(input, min).ok()?;
let bigger = ChunkCompare::gt(input, max).ok()?;
Some(!(smaller | bigger).all())
};
Ok(should_read().unwrap_or(true))
},
#[cfg(feature = "is_between")]
FunctionExpr::Boolean(BooleanFunction::IsBetween { closed }) => {
let should_read = || -> Option<bool> {
let root: Arc<str> = expr_to_leaf_column_name(&input[0]).ok()?;
let Expr::Literal(left) = &input[1] else {
return None;
};
let Expr::Literal(right) = &input[2] else {
return None;
};
let st = stats.get_stats(&root).ok()?;
let min = st.to_min()?;
let max = st.to_max()?;
let (left, left_dtype) = (left.to_any_value()?, left.get_datatype());
let (right, right_dtype) = (right.to_any_value()?, right.get_datatype());
let left =
Series::from_any_values_and_dtype("", &[left], &left_dtype, false).ok()?;
let right =
Series::from_any_values_and_dtype("", &[right], &right_dtype, false)
.ok()?;
// don't read the row_group anyways as
// the condition will evaluate to false.
// e.g. in_between(10, 5)
if ChunkCompare::gt(&left, &right).ok()?.all() {
return Some(false);
}
let (left_open, right_open) = match closed {
ClosedInterval::None => (true, true),
ClosedInterval::Both => (false, false),
ClosedInterval::Left => (false, true),
ClosedInterval::Right => (true, false),
};
// check the right limit of the interval.
// if the end is open, we should be stricter (lt_eq instead of lt).
if right_open && ChunkCompare::lt_eq(&right, min).ok()?.all()
|| !right_open && ChunkCompare::lt(&right, min).ok()?.all()
{
return Some(false);
}
// we couldn't conclude anything using the right limit,
// check the left limit of the interval
if left_open && ChunkCompare::gt_eq(&left, max).ok()?.all()
|| !left_open && ChunkCompare::gt(&left, max).ok()?.all()
{
return Some(false);
}
// read the row_group
Some(true)
};
Ok(should_read().unwrap_or(true))
},
_ => Ok(true),
}
}
}
impl PartitionedAggregation for ApplyExpr {
fn evaluate_partitioned(
&self,
df: &DataFrame,
groups: &GroupsProxy,
state: &ExecutionState,
) -> PolarsResult<Series> {
let a = self.inputs[0].as_partitioned_aggregator().unwrap();
let s = a.evaluate_partitioned(df, groups, state)?;
if self.allow_rename {
self.eval_and_flatten(&mut [s])
} else {
let in_name = s.name().to_string();
Ok(self.eval_and_flatten(&mut [s])?.with_name(&in_name))
}
}
fn finalize(
&self,
partitioned: Series,
_groups: &GroupsProxy,
_state: &ExecutionState,
) -> PolarsResult<Series> {
Ok(partitioned)
}
}