forked from ARM-software/ML-KWS-for-MCU
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
456 lines (413 loc) · 17.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
#
# Modifications Copyright 2017 Arm Inc. All Rights Reserved.
# Added model dimensions as command line argument and changed to Adam optimizer
#
#
"""Simple speech recognition to spot a limited number of keywords.
This is a self-contained example script that will train a very basic audio
recognition model in TensorFlow. It downloads the necessary training data and
runs with reasonable defaults to train within a few hours even only using a CPU.
For more information, please see
https://www.tensorflow.org/tutorials/audio_recognition.
It is intended as an introduction to using neural networks for audio
recognition, and is not a full speech recognition system. For more advanced
speech systems, I recommend looking into Kaldi. This network uses a keyword
detection style to spot discrete words from a small vocabulary, consisting of
"yes", "no", "up", "down", "left", "right", "on", "off", "stop", and "go".
To run the training process, use:
bazel run tensorflow/examples/speech_commands:train
This will write out checkpoints to /tmp/speech_commands_train/, and will
download over 1GB of open source training data, so you'll need enough free space
and a good internet connection. The default data is a collection of thousands of
one-second .wav files, each containing one spoken word. This data set is
collected from https://aiyprojects.withgoogle.com/open_speech_recording, please
consider contributing to help improve this and other models!
As training progresses, it will print out its accuracy metrics, which should
rise above 90% by the end. Once it's complete, you can run the freeze script to
get a binary GraphDef that you can easily deploy on mobile applications.
If you want to train on your own data, you'll need to create .wavs with your
recordings, all at a consistent length, and then arrange them into subfolders
organized by label. For example, here's a possible file structure:
my_wavs >
up >
audio_0.wav
audio_1.wav
down >
audio_2.wav
audio_3.wav
other>
audio_4.wav
audio_5.wav
You'll also need to tell the script what labels to look for, using the
`--wanted_words` argument. In this case, 'up,down' might be what you want, and
the audio in the 'other' folder would be used to train an 'unknown' category.
To pull this all together, you'd run:
bazel run tensorflow/examples/speech_commands:train -- \
--data_dir=my_wavs --wanted_words=up,down
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import os.path
import sys
import numpy as np
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
import input_data
import models
from tensorflow.python.platform import gfile
from tensorflow.contrib import slim as slim
FLAGS = None
def main(_):
# We want to see all the logging messages for this tutorial.
tf.logging.set_verbosity(tf.logging.INFO)
# Start a new TensorFlow session.
sess = tf.InteractiveSession()
# Begin by making sure we have the training data we need. If you already have
# training data of your own, use `--data_url= ` on the command line to avoid
# downloading.
model_settings = models.prepare_model_settings(
len(input_data.prepare_words_list(FLAGS.wanted_words.split(','))),
FLAGS.sample_rate, FLAGS.clip_duration_ms, FLAGS.window_size_ms,
FLAGS.window_stride_ms, FLAGS.dct_coefficient_count)
audio_processor = input_data.AudioProcessor(
FLAGS.data_url, FLAGS.data_dir, FLAGS.silence_percentage,
FLAGS.unknown_percentage,
FLAGS.wanted_words.split(','), FLAGS.validation_percentage,
FLAGS.testing_percentage, model_settings)
fingerprint_size = model_settings['fingerprint_size']
label_count = model_settings['label_count']
time_shift_samples = int((FLAGS.time_shift_ms * FLAGS.sample_rate) / 1000)
# Figure out the learning rates for each training phase. Since it's often
# effective to have high learning rates at the start of training, followed by
# lower levels towards the end, the number of steps and learning rates can be
# specified as comma-separated lists to define the rate at each stage. For
# example --how_many_training_steps=10000,3000 --learning_rate=0.001,0.0001
# will run 13,000 training loops in total, with a rate of 0.001 for the first
# 10,000, and 0.0001 for the final 3,000.
training_steps_list = list(map(int, FLAGS.how_many_training_steps.split(',')))
learning_rates_list = list(map(float, FLAGS.learning_rate.split(',')))
if len(training_steps_list) != len(learning_rates_list):
raise Exception(
'--how_many_training_steps and --learning_rate must be equal length '
'lists, but are %d and %d long instead' % (len(training_steps_list),
len(learning_rates_list)))
fingerprint_input = tf.placeholder(
tf.float32, [None, fingerprint_size], name='fingerprint_input')
logits, dropout_prob = models.create_model(
fingerprint_input,
model_settings,
FLAGS.model_architecture,
FLAGS.model_size_info,
is_training=True)
# Define loss and optimizer
ground_truth_input = tf.placeholder(
tf.float32, [None, label_count], name='groundtruth_input')
# Optionally we can add runtime checks to spot when NaNs or other symptoms of
# numerical errors start occurring during training.
control_dependencies = []
if FLAGS.check_nans:
checks = tf.add_check_numerics_ops()
control_dependencies = [checks]
# Create the back propagation and training evaluation machinery in the graph.
with tf.name_scope('cross_entropy'):
cross_entropy_mean = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(
labels=ground_truth_input, logits=logits))
tf.summary.scalar('cross_entropy', cross_entropy_mean)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.name_scope('train'), tf.control_dependencies(update_ops), tf.control_dependencies(control_dependencies):
learning_rate_input = tf.placeholder(
tf.float32, [], name='learning_rate_input')
train_op = tf.train.AdamOptimizer(
learning_rate_input)
train_step = slim.learning.create_train_op(cross_entropy_mean, train_op)
# train_step = tf.train.GradientDescentOptimizer(
# learning_rate_input).minimize(cross_entropy_mean)
predicted_indices = tf.argmax(logits, 1)
expected_indices = tf.argmax(ground_truth_input, 1)
correct_prediction = tf.equal(predicted_indices, expected_indices)
confusion_matrix = tf.confusion_matrix(
expected_indices, predicted_indices, num_classes=label_count)
evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
tf.summary.scalar('accuracy', evaluation_step)
global_step = tf.train.get_or_create_global_step()
increment_global_step = tf.assign(global_step, global_step + 1)
saver = tf.train.Saver(tf.global_variables())
# Merge all the summaries and write them out to /tmp/retrain_logs (by default)
merged_summaries = tf.summary.merge_all()
train_writer = tf.summary.FileWriter(FLAGS.summaries_dir + '/train',
sess.graph)
validation_writer = tf.summary.FileWriter(FLAGS.summaries_dir + '/validation')
tf.global_variables_initializer().run()
# Parameter counts
params = tf.trainable_variables()
num_params = sum(map(lambda t: np.prod(tf.shape(t.value()).eval()), params))
print('Total number of Parameters: ', num_params)
start_step = 1
if FLAGS.start_checkpoint:
models.load_variables_from_checkpoint(sess, FLAGS.start_checkpoint)
start_step = global_step.eval(session=sess)
tf.logging.info('Training from step: %d ', start_step)
# Save graph.pbtxt.
tf.train.write_graph(sess.graph_def, FLAGS.train_dir,
FLAGS.model_architecture + '.pbtxt')
# Save list of words.
with gfile.GFile(
os.path.join(FLAGS.train_dir, FLAGS.model_architecture + '_labels.txt'),
'w') as f:
f.write('\n'.join(audio_processor.words_list))
# Training loop.
best_accuracy = 0
training_steps_max = np.sum(training_steps_list)
for training_step in xrange(start_step, training_steps_max + 1):
# Figure out what the current learning rate is.
training_steps_sum = 0
for i in range(len(training_steps_list)):
training_steps_sum += training_steps_list[i]
if training_step <= training_steps_sum:
learning_rate_value = learning_rates_list[i]
break
# Pull the audio samples we'll use for training.
train_fingerprints, train_ground_truth = audio_processor.get_data(
FLAGS.batch_size, 0, model_settings, FLAGS.background_frequency,
FLAGS.background_volume, time_shift_samples, 'training', sess)
# Run the graph with this batch of training data.
train_summary, train_accuracy, cross_entropy_value, _, _ = sess.run(
[
merged_summaries, evaluation_step, cross_entropy_mean, train_step,
increment_global_step
],
feed_dict={
fingerprint_input: train_fingerprints,
ground_truth_input: train_ground_truth,
learning_rate_input: learning_rate_value,
dropout_prob: 1.0
})
train_writer.add_summary(train_summary, training_step)
tf.logging.info('Step #%d: rate %f, accuracy %.2f%%, cross entropy %f' %
(training_step, learning_rate_value, train_accuracy * 100,
cross_entropy_value))
is_last_step = (training_step == training_steps_max)
if (training_step % FLAGS.eval_step_interval) == 0 or is_last_step:
set_size = audio_processor.set_size('validation')
total_accuracy = 0
total_conf_matrix = None
for i in xrange(0, set_size, FLAGS.batch_size):
validation_fingerprints, validation_ground_truth = (
audio_processor.get_data(FLAGS.batch_size, i, model_settings, 0.0,
0.0, 0, 'validation', sess))
# Run a validation step and capture training summaries for TensorBoard
# with the `merged` op.
validation_summary, validation_accuracy, conf_matrix = sess.run(
[merged_summaries, evaluation_step, confusion_matrix],
feed_dict={
fingerprint_input: validation_fingerprints,
ground_truth_input: validation_ground_truth,
dropout_prob: 1.0
})
validation_writer.add_summary(validation_summary, training_step)
batch_size = min(FLAGS.batch_size, set_size - i)
total_accuracy += (validation_accuracy * batch_size) / set_size
if total_conf_matrix is None:
total_conf_matrix = conf_matrix
else:
total_conf_matrix += conf_matrix
tf.logging.info('Confusion Matrix:\n %s' % (total_conf_matrix))
tf.logging.info('Step %d: Validation accuracy = %.2f%% (N=%d)' %
(training_step, total_accuracy * 100, set_size))
# Save the model checkpoint when validation accuracy improves
if total_accuracy > best_accuracy:
best_accuracy = total_accuracy
checkpoint_path = os.path.join(FLAGS.train_dir, 'best',
FLAGS.model_architecture + '_'+ str(int(best_accuracy*10000)) + '.ckpt')
tf.logging.info('Saving best model to "%s-%d"', checkpoint_path, training_step)
saver.save(sess, checkpoint_path, global_step=training_step)
tf.logging.info('So far the best validation accuracy is %.2f%%' % (best_accuracy*100))
set_size = audio_processor.set_size('testing')
tf.logging.info('set_size=%d', set_size)
total_accuracy = 0
total_conf_matrix = None
for i in xrange(0, set_size, FLAGS.batch_size):
test_fingerprints, test_ground_truth = audio_processor.get_data(
FLAGS.batch_size, i, model_settings, 0.0, 0.0, 0, 'testing', sess)
test_accuracy, conf_matrix = sess.run(
[evaluation_step, confusion_matrix],
feed_dict={
fingerprint_input: test_fingerprints,
ground_truth_input: test_ground_truth,
dropout_prob: 1.0
})
batch_size = min(FLAGS.batch_size, set_size - i)
total_accuracy += (test_accuracy * batch_size) / set_size
if total_conf_matrix is None:
total_conf_matrix = conf_matrix
else:
total_conf_matrix += conf_matrix
tf.logging.info('Confusion Matrix:\n %s' % (total_conf_matrix))
tf.logging.info('Final test accuracy = %.2f%% (N=%d)' % (total_accuracy * 100,
set_size))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--data_url',
type=str,
# pylint: disable=line-too-long
default='http://download.tensorflow.org/data/speech_commands_v0.02.tar.gz',
# pylint: enable=line-too-long
help='Location of speech training data archive on the web.')
parser.add_argument(
'--data_dir',
type=str,
default='/tmp/speech_dataset/',
help="""\
Where to download the speech training data to.
""")
parser.add_argument(
'--background_volume',
type=float,
default=0.1,
help="""\
How loud the background noise should be, between 0 and 1.
""")
parser.add_argument(
'--background_frequency',
type=float,
default=0.8,
help="""\
How many of the training samples have background noise mixed in.
""")
parser.add_argument(
'--silence_percentage',
type=float,
default=10.0,
help="""\
How much of the training data should be silence.
""")
parser.add_argument(
'--unknown_percentage',
type=float,
default=10.0,
help="""\
How much of the training data should be unknown words.
""")
parser.add_argument(
'--time_shift_ms',
type=float,
default=100.0,
help="""\
Range to randomly shift the training audio by in time.
""")
parser.add_argument(
'--testing_percentage',
type=int,
default=10,
help='What percentage of wavs to use as a test set.')
parser.add_argument(
'--validation_percentage',
type=int,
default=10,
help='What percentage of wavs to use as a validation set.')
parser.add_argument(
'--sample_rate',
type=int,
default=16000,
help='Expected sample rate of the wavs',)
parser.add_argument(
'--clip_duration_ms',
type=int,
default=1000,
help='Expected duration in milliseconds of the wavs',)
parser.add_argument(
'--window_size_ms',
type=float,
default=30.0,
help='How long each spectrogram timeslice is',)
parser.add_argument(
'--window_stride_ms',
type=float,
default=10.0,
help='How long each spectrogram timeslice is',)
parser.add_argument(
'--dct_coefficient_count',
type=int,
default=40,
help='How many bins to use for the MFCC fingerprint',)
parser.add_argument(
'--how_many_training_steps',
type=str,
default='15000,3000',
help='How many training loops to run',)
parser.add_argument(
'--eval_step_interval',
type=int,
default=400,
help='How often to evaluate the training results.')
parser.add_argument(
'--learning_rate',
type=str,
default='0.001,0.0001',
help='How large a learning rate to use when training.')
parser.add_argument(
'--batch_size',
type=int,
default=100,
help='How many items to train with at once',)
parser.add_argument(
'--summaries_dir',
type=str,
default='/tmp/retrain_logs',
help='Where to save summary logs for TensorBoard.')
parser.add_argument(
'--wanted_words',
type=str,
default='yes,no,up,down,left,right,on,off,stop,go',
help='Words to use (others will be added to an unknown label)',)
parser.add_argument(
'--train_dir',
type=str,
default='/tmp/speech_commands_train',
help='Directory to write event logs and checkpoint.')
parser.add_argument(
'--save_step_interval',
type=int,
default=100,
help='Save model checkpoint every save_steps.')
parser.add_argument(
'--start_checkpoint',
type=str,
default='',
help='If specified, restore this pretrained model before any training.')
parser.add_argument(
'--model_architecture',
type=str,
default='dnn',
help='What model architecture to use')
parser.add_argument(
'--model_size_info',
type=int,
nargs="+",
default=[128,128,128],
help='Model dimensions - different for various models')
parser.add_argument(
'--check_nans',
type=bool,
default=False,
help='Whether to check for invalid numbers during processing')
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)