-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathset_mesh_pair.py
170 lines (129 loc) · 6.19 KB
/
set_mesh_pair.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# Authors: Po-An Lin @ Duke University @ Arya Lab
# Contact: poan.lin@duke.edu
# Purpose: Process LAMMPS data files and update bond information based on Blossom algorithm output.
import re
import os
import networkx as nx
import numpy as np
import argparse
def read_lammps_data(file_path):
"""
Reads a LAMMPS data file.
Parameters:
file_path (str): Path to the LAMMPS data file.
Returns:
tuple: Extracted header, masses, pair coefficients, bond coefficients, atoms, bonds, and velocities.
"""
with open(file_path, 'r') as file:
lines = file.readlines()
header, masses, pair_coeffs, bond_coeffs, atoms, bonds, velocities = [], [], [], [], [], [], []
current_section = None
for line in lines:
if "Atoms" in line:
current_section = "atoms"
continue
elif "Bonds" in line:
current_section = "bonds"
continue
elif "Masses" in line:
current_section = "masses"
elif "Pair Coeffs" in line:
current_section = "pair_coeffs"
elif "Bond Coeffs" in line:
current_section = "bond_coeffs"
elif "Velocities" in line:
current_section = "velocities"
if current_section == "atoms" and re.match(r'^\d+', line):
atoms.append(line.strip().split())
elif current_section == "bonds" and re.match(r'^\d+', line):
bonds.append(line.strip().split())
elif current_section == "masses":
masses.append(line)
elif current_section == "pair_coeffs":
pair_coeffs.append(line)
elif current_section == "bond_coeffs":
bond_coeffs.append(line)
elif current_section == "velocities" and re.match(r'^\d+', line):
velocities.append(line.strip().split())
else:
header.append(line)
if "Velocities\n" in header:
header.remove("Velocities\n")
return header, masses, pair_coeffs, bond_coeffs, atoms, bonds, velocities
def distance_matrix_pbc(xyz, box_lengths):
"""
Computes the distance matrix with periodic boundary conditions (PBC).
Parameters:
xyz (numpy.ndarray): Array of shape (N, 3) containing the xyz coordinates of N atoms.
box_lengths (numpy.ndarray): Array of shape (3,) containing the lengths of the simulation box in x, y, z directions.
Returns:
numpy.ndarray: A (N, N) distance matrix considering PBC.
"""
N = xyz.shape[0]
dist_matrix = np.zeros((N, N))
for i in range(N):
for j in range(i + 1, N):
delta = xyz[i] - xyz[j]
# Apply minimum image convention for periodic boundaries
delta -= np.round(delta / box_lengths) * box_lengths
dist = np.sqrt(np.sum(delta ** 2))
dist_matrix[i, j] = dist
dist_matrix[j, i] = dist # Symmetric matrix
return dist_matrix
def find_minimized_surface_pair(atoms, box_lengths=1000, save_dir=''):
"""
Finds the minimized surface pair using the Blossom algorithm and saves the result.
Parameters:
atoms (numpy.ndarray): Array of atom coordinates with types and stuff.
box_lengths (numpy.ndarray or float): Lengths of the simulation box. Not an important thing here so I put in 1000 as a dummpy parameter. if the rigid body is crossing the periodic boundary, then be careful with box_lengths
save_dir (str): Directory to save the output.
Returns:
np.ndarray: Pairs of atom IDs representing the minimized surface pair.
"""
# Extract coordinates (assumed to be in columns 3 to 5)
coordinates = np.array(atoms)[:, 2:6].astype(float)
# Calculate distance matrix with periodic boundary conditions. PBC is overkill but useful if your rigid body is crossing the periodic boundary condition
dist_matrix = distance_matrix_pbc(coordinates, box_lengths)
# Create a graph and add edges with negative distances (to minimize total distance)
G = nx.Graph()
for i in range(len(coordinates)):
for j in range(i + 1, len(coordinates)):
dist = dist_matrix[i][j]
G.add_edge(i, j, weight=-dist) # Use negative distance to maximize matching
# Find the minimum distance pairing using the Blossom algorithm
matching = nx.max_weight_matching(G, maxcardinality=True)
# Extract atom IDs
id_array = atoms[:, 0].astype(int)
# Convert index tuples from the matching to actual atom ID pairs
id_pair_lists = np.array([tuple(id_array[idx] for idx in index_tuple) for index_tuple in matching])
# Save the matching pairs to a file
np.save(os.path.join(save_dir, "meshed_rigid_body_pair_list.npy"), id_pair_lists)
return id_pair_lists
def main():
# Setup argument parser
parser = argparse.ArgumentParser(description="Process LAMMPS file, extract atom coordinates, and find minimized surface pair.")
# Command-line arguments
parser.add_argument('--save_dir', type=str, default=os.getcwd(), help='Directory to save/load files. Defaults to current working directory.')
parser.add_argument('--parent_path', type=str, default='', help='Parent path for input/output data files.')
parser.add_argument('--input_file', type=str, default='rigid_body_no_polymer.data', help='Input LAMMPS data file. Defaults to "rigid_body_no_polymer.data".')
# Parse arguments
args = parser.parse_args()
# Full path for input file
input_LAMMPS_datafile = os.path.join(args.parent_path, args.input_file)
# Read atom data from LAMMPS file
_, _, _, _, atoms, _, _ = read_lammps_data(input_LAMMPS_datafile)
# Call the function to find minimized surface pair
find_minimized_surface_pair(np.array(atoms))
if __name__ == "__main__":
main()
# if __name__ == "__main__":
# # Example usage
# save_dir = os.getcwd()
# parent_path = ""
# input_file = os.path.join(parent_path, 'octa.data')
# # Read atom data from LAMMPS file
# _, _, _, _, atoms, _, _ = read_lammps_data(input_file)
# # Extract coordinates (assumed to be in columns 3 to 5)
# coordinates = np.array(atoms)[:, 2:6].astype(float)
# # Find minimized surface pair and save result
# find_minimized_surface_pair(coordinates)