description |
---|
Statistical method used to model the relationship between a dependent variable and one or more independent variables. |
We currently support regression algorithms from scikit-learn, XGBoost, and LightGBM.
Algorithm | Regression |
---|---|
xgboost |
XGBRegressor |
xgboost_random_forest |
XGBRFRegressor |
lightgbm |
LGBMRegressor |
catboost |
CatBoostRegressor |
Algorithm | Regression |
---|---|
ada_boost |
AdaBoostRegressor |
bagging |
BaggingRegressor |
extra_trees |
ExtraTreesRegressor |
gradient_boosting_trees |
GradientBoostingRegressor |
random_forest |
RandomForestRegressor |
hist_gradient_boosting |
HistGradientBoostingRegressor |
Algorithm | Regression |
---|---|
svm |
SVR |
nu_svm |
NuSVR |
linear_svm |
LinearSVR |
Algorithm | Regression |
---|---|
linear |
LinearRegression |
ridge |
Ridge |
lasso |
Lasso |
elastic_net |
ElasticNet |
least_angle |
LARS |
lasso_least_angle |
LassoLars |
orthoganl_matching_pursuit |
OrthogonalMatchingPursuit |
bayesian_ridge |
BayesianRidge |
automatic_relevance_determination |
ARDRegression |
stochastic_gradient_descent |
SGDRegressor |
passive_aggressive |
PassiveAggressiveRegressor |
ransac |
RANSACRegressor |
theil_sen |
TheilSenRegressor |
huber |
HuberRegressor |
quantile |
QuantileRegressor |
Algorithm | Regression |
---|---|
kernel_ridge |
KernelRidge |
gaussian_process |
GaussianProcessRegressor |