-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdecode_baseline_allattn.py
107 lines (88 loc) · 4.11 KB
/
decode_baseline_allattn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import os
import sys
import random
import argparse
import numpy as np
import torch
from transformers import BartTokenizer, BartForConditionalGeneration
from datasets import load_dataset
def decode(args):
start_id = args['start_id']
end_id = args['end_id']
decode_dir = args['decode_dir']
task = args['dataset']
# uses GPU in training or not
if torch.cuda.is_available() and args['use_gpu']: torch_device = 'cuda'
else: torch_device = 'cpu'
bart_tokenizer = BartTokenizer.from_pretrained('facebook/bart-large')
if task == 'CNNDM': bart = BartForConditionalGeneration.from_pretrained('facebook/bart-large-cnn')
elif task == 'XSUM': bart = BartEfficientDecoder.from_pretrained('facebook/bart-large-xsum')
trained_model_path = args['load']
if torch_device == 'cuda':
bart.cuda()
state = torch.load(trained_model_path)
else:
state = torch.load(trained_model_path, map_location=torch.device('cpu'))
model_state_dict = state['model']
bart.load_state_dict(model_state_dict)
print('model loaded:', trained_model_path)
bart.eval()
if task == 'CNNDM':
test_data = load_dataset('cnn_dailymail', '3.0.0', split='test')
print("cnndm data loaded")
elif task == 'XSUM':
test_data = load_dataset('xsum', split='test')
print("xsum data loaded")
else:
raise ValueError("task not supported, only CNNDM | XSUM")
ids = [x for x in range(start_id, end_id)]
if args['random_order']: random.shuffle(ids)
# decoding hyperparameters
num_beams = args['num_beams']
length_penalty = args['length_penalty']
max_length = args['max_length']
min_length = args['min_length']
no_repeat_ngram_size = args['no_repeat_ngram_size']
for id in ids:
outpath = "{}/{}_decoded.txt".format(decode_dir, id)
exist = os.path.isfile(outpath)
if exist:
print("id {}: already exists".format(id))
continue
if task == 'CNNDM': document = test_data[id]['article']
elif task == 'XSUM': document = test_data[id]['document']
batch_encoded_inputs = bart_tokenizer.batch_encode_plus([document], return_tensors='pt',
add_special_tokens=True, max_length=bart.config.max_position_embeddings, pad_to_max_length=False)
input_ids = batch_encoded_inputs['input_ids'].to(torch_device)
attention_mask = batch_encoded_inputs['attention_mask'].to(torch_device)
summary_ids = bart.generate(input_ids,
num_beams=num_beams, length_penalty=length_penalty,
max_length=max_length, min_length=min_length,
no_repeat_ngram_size=no_repeat_ngram_size)
text = bart_tokenizer.decode(summary_ids[0].cpu().numpy(), skip_special_tokens=True)
with open(outpath, 'w') as f:
f.write(text)
print("wrote:", outpath)
def get_decode_arguments(parser):
'''Arguments for decoding'''
parser.register("type", "bool", lambda v: v.lower() == "true")
# file paths
parser.add_argument('--load', type=str, required=True) # path to load model
parser.add_argument('--decode_dir', type=str, required=True)
parser.add_argument('--dataset', type=str, required=True)
parser.add_argument('--start_id', type=int, required=True)
parser.add_argument('--end_id', type=int, required=True)
parser.add_argument('--num_beams', type=int, default=4)
parser.add_argument('--max_length', type=int, default=200)
parser.add_argument('--min_length', type=int, default=50)
parser.add_argument('--no_repeat_ngram_size', type=int, default=3)
parser.add_argument('--length_penalty', type=float, default=2.0)
parser.add_argument('--random_order', type="bool", nargs="?", const=True, default=False)
parser.add_argument('--use_gpu', type="bool", nargs="?", const=True, default=False)
return parser
if __name__ == "__main__":
# get configurations from the terminal
parser = argparse.ArgumentParser()
parser = get_decode_arguments(parser)
args = vars(parser.parse_args())
decode(args)