- python 3.7
- torch 1.2
- CUDA 10
- download (Manual/ASR transcripts): http://groups.inf.ed.ac.uk/ami/download/
- process the downloaded files into this format:
utt0000.A.1 0.37 1.76 A bck 0 3 0 hmm hmm hmm .
utt0001.B.2 10.99 12.13 B fra 1 2 0 are we
utt0002.B.3 12.13 14.53 B el.inf 4 19 0 we're not allowed to dim the lights so people can see that a bit better ?
- use data/meeting.py to convert the processed files into pickle binaries
python train_ami.py
- set the hyperparameters in args['...']
- choose GPU(s) by setting os.environ["CUDA_VISIBLE_DEVICES"] = '0'
python decode_ami.py start_idx
- set the decoding parameters in args['...']
PyROUGE: https://pypi.org/project/pyrouge/
python evaluate_attn_div_ami.py start_idx end_idx