-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathtrain.py
150 lines (122 loc) · 8.36 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import argparse
import os
import time
import uuid
from collections import deque
from typing import Optional
from tensorboardX import SummaryWriter
from torch import optim
from torch.optim.lr_scheduler import MultiStepLR
from torch.utils.data import DataLoader
from backbone.base import Base as BackboneBase
from config.train_config import TrainConfig as Config
from dataset.base import Base as DatasetBase
from logger import Logger as Log
from model import Model
from roi.wrapper import Wrapper as ROIWrapper
def _train(dataset_name: str, backbone_name: str, path_to_data_dir: str, path_to_checkpoints_dir: str, path_to_resuming_checkpoint: Optional[str]):
dataset = DatasetBase.from_name(dataset_name)(path_to_data_dir, DatasetBase.Mode.TRAIN, Config.IMAGE_MIN_SIDE, Config.IMAGE_MAX_SIDE)
dataloader = DataLoader(dataset, batch_size=1, shuffle=True, num_workers=8, pin_memory=True)
Log.i('Found {:d} samples'.format(len(dataset)))
backbone = BackboneBase.from_name(backbone_name)(pretrained=True)
model = Model(backbone, dataset.num_classes(), pooling_mode=Config.POOLING_MODE,
anchor_ratios=Config.ANCHOR_RATIOS, anchor_scales=Config.ANCHOR_SCALES,
rpn_pre_nms_top_n=Config.RPN_PRE_NMS_TOP_N, rpn_post_nms_top_n=Config.RPN_POST_NMS_TOP_N).cuda()
optimizer = optim.SGD(model.parameters(), lr=Config.LEARNING_RATE,
momentum=Config.MOMENTUM, weight_decay=Config.WEIGHT_DECAY)
scheduler = MultiStepLR(optimizer, milestones=Config.STEP_LR_SIZES, gamma=Config.STEP_LR_GAMMA)
step = 0
time_checkpoint = time.time()
losses = deque(maxlen=100)
summary_writer = SummaryWriter(os.path.join(path_to_checkpoints_dir, 'summaries'))
should_stop = False
num_steps_to_display = Config.NUM_STEPS_TO_DISPLAY
num_steps_to_snapshot = Config.NUM_STEPS_TO_SNAPSHOT
num_steps_to_finish = Config.NUM_STEPS_TO_FINISH
if path_to_resuming_checkpoint is not None:
step = model.load(path_to_resuming_checkpoint, optimizer, scheduler)
Log.i(f'Model has been restored from file: {path_to_resuming_checkpoint}')
Log.i('Start training')
while not should_stop:
for batch_index, (_, image_batch, _, bboxes_batch, labels_batch) in enumerate(dataloader):
assert image_batch.shape[0] == 1, 'only batch size of 1 is supported'
image = image_batch[0].cuda()
bboxes = bboxes_batch[0].cuda()
labels = labels_batch[0].cuda()
forward_input = Model.ForwardInput.Train(image, gt_classes=labels, gt_bboxes=bboxes)
forward_output: Model.ForwardOutput.Train = model.train().forward(forward_input)
anchor_objectness_loss, anchor_transformer_loss, proposal_class_loss, proposal_transformer_loss = forward_output
loss = anchor_objectness_loss + anchor_transformer_loss + proposal_class_loss + proposal_transformer_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
scheduler.step()
losses.append(loss.item())
summary_writer.add_scalar('train/anchor_objectness_loss', anchor_objectness_loss.item(), step)
summary_writer.add_scalar('train/anchor_transformer_loss', anchor_transformer_loss.item(), step)
summary_writer.add_scalar('train/proposal_class_loss', proposal_class_loss.item(), step)
summary_writer.add_scalar('train/proposal_transformer_loss', proposal_transformer_loss.item(), step)
summary_writer.add_scalar('train/loss', loss.item(), step)
step += 1
if step == num_steps_to_finish:
should_stop = True
if step % num_steps_to_display == 0:
elapsed_time = time.time() - time_checkpoint
time_checkpoint = time.time()
steps_per_sec = num_steps_to_display / elapsed_time
samples_per_sec = dataloader.batch_size * steps_per_sec
eta = (num_steps_to_finish - step) / steps_per_sec / 3600
avg_loss = sum(losses) / len(losses)
lr = scheduler.get_lr()[0]
Log.i(f'[Step {step}] Avg. Loss = {avg_loss:.6f}, Learning Rate = {lr:.6f} ({samples_per_sec:.2f} samples/sec; ETA {eta:.1f} hrs)')
if step % num_steps_to_snapshot == 0 or should_stop:
path_to_checkpoint = model.save(path_to_checkpoints_dir, step, optimizer, scheduler)
Log.i(f'Model has been saved to {path_to_checkpoint}')
if should_stop:
break
Log.i('Done')
if __name__ == '__main__':
def main():
parser = argparse.ArgumentParser()
parser.add_argument('-s', '--dataset', type=str, choices=DatasetBase.OPTIONS, required=True, help='name of dataset')
parser.add_argument('-b', '--backbone', type=str, choices=BackboneBase.OPTIONS, required=True, help='name of backbone model')
parser.add_argument('-d', '--data_dir', type=str, default='./data', help='path to data directory')
parser.add_argument('-o', '--outputs_dir', type=str, default='./outputs', help='path to outputs directory')
parser.add_argument('-r', '--resume_checkpoint', type=str, help='path to resuming checkpoint')
parser.add_argument('--image_min_side', type=float, help='default: {:g}'.format(Config.IMAGE_MIN_SIDE))
parser.add_argument('--image_max_side', type=float, help='default: {:g}'.format(Config.IMAGE_MAX_SIDE))
parser.add_argument('--anchor_ratios', type=str, help='default: "{!s}"'.format(Config.ANCHOR_RATIOS))
parser.add_argument('--anchor_scales', type=str, help='default: "{!s}"'.format(Config.ANCHOR_SCALES))
parser.add_argument('--pooling_mode', type=str, choices=ROIWrapper.OPTIONS, help='default: {.value:s}'.format(Config.POOLING_MODE))
parser.add_argument('--rpn_pre_nms_top_n', type=int, help='default: {:d}'.format(Config.RPN_PRE_NMS_TOP_N))
parser.add_argument('--rpn_post_nms_top_n', type=int, help='default: {:d}'.format(Config.RPN_POST_NMS_TOP_N))
parser.add_argument('--learning_rate', type=float, help='default: {:g}'.format(Config.LEARNING_RATE))
parser.add_argument('--momentum', type=float, help='default: {:g}'.format(Config.MOMENTUM))
parser.add_argument('--weight_decay', type=float, help='default: {:g}'.format(Config.WEIGHT_DECAY))
parser.add_argument('--step_lr_sizes', type=str, help='default: {!s}'.format(Config.STEP_LR_SIZES))
parser.add_argument('--step_lr_gamma', type=float, help='default: {:g}'.format(Config.STEP_LR_GAMMA))
parser.add_argument('--num_steps_to_display', type=int, help='default: {:d}'.format(Config.NUM_STEPS_TO_DISPLAY))
parser.add_argument('--num_steps_to_snapshot', type=int, help='default: {:d}'.format(Config.NUM_STEPS_TO_SNAPSHOT))
parser.add_argument('--num_steps_to_finish', type=int, help='default: {:d}'.format(Config.NUM_STEPS_TO_FINISH))
args = parser.parse_args()
dataset_name = args.dataset
backbone_name = args.backbone
path_to_data_dir = args.data_dir
path_to_outputs_dir = args.outputs_dir
path_to_resuming_checkpoint = args.resume_checkpoint
path_to_checkpoints_dir = os.path.join(path_to_outputs_dir, 'checkpoints-{:s}-{:s}-{:s}-{:s}'.format(
time.strftime('%Y%m%d%H%M%S'), dataset_name, backbone_name, str(uuid.uuid4()).split('-')[0]))
os.makedirs(path_to_checkpoints_dir)
Config.setup(image_min_side=args.image_min_side, image_max_side=args.image_max_side,
anchor_ratios=args.anchor_ratios, anchor_scales=args.anchor_scales, pooling_mode=args.pooling_mode,
rpn_pre_nms_top_n=args.rpn_pre_nms_top_n, rpn_post_nms_top_n=args.rpn_post_nms_top_n,
learning_rate=args.learning_rate, momentum=args.momentum, weight_decay=args.weight_decay,
step_lr_sizes=args.step_lr_sizes, step_lr_gamma=args.step_lr_gamma,
num_steps_to_display=args.num_steps_to_display, num_steps_to_snapshot=args.num_steps_to_snapshot, num_steps_to_finish=args.num_steps_to_finish)
Log.initialize(os.path.join(path_to_checkpoints_dir, 'train.log'))
Log.i('Arguments:')
for k, v in vars(args).items():
Log.i(f'\t{k} = {v}')
Log.i(Config.describe())
_train(dataset_name, backbone_name, path_to_data_dir, path_to_checkpoints_dir, path_to_resuming_checkpoint)
main()