-
Notifications
You must be signed in to change notification settings - Fork 48
/
test_net.py
134 lines (110 loc) · 4.46 KB
/
test_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
"""Perform inference on one or more datasets."""
import argparse
import cv2
import os
import pprint
import sys
import time
import torch
import _init_paths # pylint: disable=unused-import
from core.config import cfg, merge_cfg_from_file, merge_cfg_from_list, assert_and_infer_cfg
from core.test_engine import run_inference
import utils.logging
# OpenCL may be enabled by default in OpenCV3; disable it because it's not
# thread safe and causes unwanted GPU memory allocations.
cv2.ocl.setUseOpenCL(False)
def parse_args():
"""Parse in command line arguments"""
parser = argparse.ArgumentParser(description='Test a Fast R-CNN network')
parser.add_argument(
'--dataset',
help='training dataset')
parser.add_argument(
'--cfg', dest='cfg_file', required=True,
help='optional config file')
parser.add_argument(
'--load_ckpt', help='path of checkpoint to load')
parser.add_argument(
'--load_detectron', help='path to the detectron weight pickle file')
parser.add_argument(
'--output_dir',
help='output directory to save the testing results. If not provided, '
'defaults to [args.load_ckpt|args.load_detectron]/../test.')
parser.add_argument(
'--set', dest='set_cfgs',
help='set config keys, will overwrite config in the cfg_file.'
' See lib/core/config.py for all options',
default=[], nargs='*')
parser.add_argument(
'--range',
help='start (inclusive) and end (exclusive) indices',
type=int, nargs=2)
parser.add_argument(
'--multi-gpu-testing', help='using multiple gpus for inference',
action='store_true')
parser.add_argument(
'--vis', dest='vis', help='visualize detections', action='store_true')
return parser.parse_args()
if __name__ == '__main__':
if not torch.cuda.is_available():
sys.exit("Need a CUDA device to run the code.")
logger = utils.logging.setup_logging(__name__)
args = parse_args()
logger.info('Called with args:')
logger.info(args)
assert (torch.cuda.device_count() == 1) ^ bool(args.multi_gpu_testing)
assert bool(args.load_ckpt) ^ bool(args.load_detectron), \
'Exactly one of --load_ckpt and --load_detectron should be specified.'
if args.output_dir is None:
ckpt_path = args.load_ckpt if args.load_ckpt else args.load_detectron
args.output_dir = os.path.join(
os.path.dirname(os.path.dirname(ckpt_path)), 'test',
os.path.basename(ckpt_path).split('.')[0])
logger.info('Automatically set output directory to %s', args.output_dir)
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
cfg.VIS = args.vis
if args.cfg_file is not None:
merge_cfg_from_file(args.cfg_file)
if args.set_cfgs is not None:
merge_cfg_from_list(args.set_cfgs)
if args.dataset == "coco2014":
cfg.TEST.DATASETS = ('coco_2014_val',)
cfg.MODEL.NUM_CLASSES = 80
elif args.dataset == "coco2017":
cfg.TEST.DATASETS = ('coco_2017_val',)
cfg.MODEL.NUM_CLASSES = 80
elif args.dataset == 'voc2007test':
cfg.TEST.DATASETS = ('voc_2007_test',)
cfg.MODEL.NUM_CLASSES = 20
elif args.dataset == 'voc2012test':
cfg.TEST.DATASETS = ('voc_2012_test',)
cfg.MODEL.NUM_CLASSES = 20
elif args.dataset == 'voc2007trainval':
cfg.TEST.DATASETS = ('voc_2007_trainval',)
cfg.MODEL.NUM_CLASSES = 20
elif args.dataset == 'voc2012trainval':
cfg.TEST.DATASETS = ('voc_2012_trainval',)
cfg.MODEL.NUM_CLASSES = 20
else: # For subprocess call
assert cfg.TEST.DATASETS, 'cfg.TEST.DATASETS shouldn\'t be empty'
assert_and_infer_cfg()
logger.info('Testing with config:')
logger.info(pprint.pformat(cfg))
# For test_engine.multi_gpu_test_net_on_dataset
args.test_net_file, _ = os.path.splitext(__file__)
# manually set args.cuda
args.cuda = True
if args.load_ckpt:
while not os.path.exists(args.load_ckpt):
logger.info('Waiting for {} to exist...'.format(args.load_ckpt))
time.sleep(10)
if args.load_detectron:
while not os.path.exists(args.load_detectron):
logger.info('Waiting for {} to exist...'.format(args.load_detectron))
time.sleep(10)
run_inference(
args,
ind_range=args.range,
multi_gpu_testing=args.multi_gpu_testing,
check_expected_results=True)