-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathirkc_m.f90
executable file
·1405 lines (1216 loc) · 44.2 KB
/
irkc_m.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
!------------------------------------------------------------------
!
! ABSTRACT:
!
! The Fortran 90 code IRKC is intended for the time integration of
! systems of partial differential equations (PDEs) of diffusion-
! reaction type for which the reaction Jacobian has real (negative)
! eigenvalues. It is based on a family of implicit-explicit
! Runge-Kutta-Chebyshev methods which are unconditionally stable for
! reaction terms and which impose a stability constraint associated
! with the diffusion terms that is quadratic in the number of stages.
! Special properties of the family make it possible for the code to
! select at each step the most efficient stable method as well as
! the most efficient step size. Moreover, they make it possible to
! apply the methods using just a few vectors of storage.
! A further step towards minimal storage requirements and optimal
! efficiency is achieved by exploiting the fact that the implicit
! terms, originating from the stiff reactions, are not coupled over
! the spatial grid points. Hence, the systems to be solved have a
! small dimension (viz., equal to the number of PDEs).
! These characteristics of the code make it especially attractive
! for problems in several spatial variables.
! IRKC is a successor to the RKC code (J. Comput. Appl. Math. 88
! (1997), pp. 315-326) that solves similar problems without
! stiff reaction terms.
!-------------------------------------------------------------------
!
! USAGE:
!
! IRKC integrates equations of the form
!
! y'(t) = F_E(t,y) + F_I(t,y), (1)
!
! when the reactions described by the F_I term cause the ODEs to be
! very stiff and the reaction Jacobian F'_I possesses a spectrum
! that is both real and negative.
! In IRKC, the term F_E is handled by a variant of the explicit
! methods of RKC and the term F_I is handled implicitly. Such
! schemes are known as IMEX methods. Implicit treatment of large
! systems of ODEs can have serious implications for storage, so we
! make assumptions about the structure of F_I that allow us to
! solve a useful class of problems with minimal storage. We have in
! mind systems of ODEs that arise from semi-discretization of
! diffusion-reaction PDEs. We make no assumption about how the
! discretization is done, but we do assume that the implicit terms
! at one grid point are not coupled to those at other grid points.
! This kind of decoupling arises naturally with finite differences,
! finite volumes, and discontinuous Galerkin discretizations. To
! take advantage of the great reductions in storage possible
! because of this assumption and the numerical method employed,
! the user must present the problem to the solver in an appropriate
! way. If there are NPDES partial differential equations, each call
! to the subroutine that evaluates F_I is made with a vector y of
! NPDES components that correspond to a single grid point. On
! demand the subroutine is also to evaluate the Jacobian of F_I, a
! matrix that is only NPDES by NPDES.
! ----------------------------------------------------------------
!
! SOFTWARE ISSUES:
!
! We have redesigned the user interface of RKC and exploited the
! capabilities of Fortran 90 to make solving ODEs easier despite
! solving a larger class of problems. We begin here with an outline
! of the collection of programs that make up the package IRKC
! and then provide some details. Fortran 90 makes it possible to
! encapsulate all information about the solution as a single
! structure of a derived type. This approach and the dynamic storage
! facilities of Fortran 90 make it possible to relieve the user of
! tedious details of allocating storage. The solution structure can
! be called anything, but let us suppose that it is called SOL.
! It must be declared as type IRKC_SOL. This structure and the
! computation itself are initialized by a call to a function
! IRKC_SET. Among other things, the user must specify the initial
! point and a final point in this call. We exploit the possibility
! in Fortran 90 of optional arguments so that the most common
! options can be set by default. The integration is done by the
! subroutine IRKC. The default in IRKC_SET is for the integration
! to proceed a step at a time, but optionally the solver can return
! just the solution at the final point. After each step an
! auxiliary function IRKC_VAL can be used to approximate the
! solution anywhere in the span of the step. Statistics are
! available directly in fields of the solution structure, but they
! can all be displayed conveniently by calling the auxiliary
! subroutine IRKC_STATS.
!------------------------------------------------------------------
!
! FORM OF THE SOLUTION:
!
! The solution structure SOL is initialized by IRKC_SET. It is then
! an input argument of the solver IRKC. If the integration is being
! done a step at a time (the default), the SOL returned at one step
! is input to IRKC for the next step. The solution structure has a
! good many fields. The most interesting fields are the current
! value of the independent variable, SOL%T, and the current
! approximate solution, SOL%Y, a vector of NEQN components. The
! logical quantity SOL%DONE is monitored to learn when the
! integration is complete.
! The methods of IRKC provide a solution between mesh points that
! is evaluated in an auxiliary function. An approximate solution
! YOUT at a point TOUT in the span of the last step is obtained by
! YOUT = IRKC_VAL(SOL,TOUT). Some of the data held in fields of SOL
! for this purpose might be of direct interest, viz., the current
! approximation to the first derivative of the solution, SOL%YP,
! and the size of the last step taken, SOL%HLAST.
!
! A convenient way to see all the statistics is to CALL
! IRKC_STATS(SOL). Individual statistics are available as the
! integer fields
!
! SOL%NFE : number of evaluations of F_E,
! SOL%NFI : number of evaluations of F_I,
! SOL%NSTEPS : number of step,
! SOL%NACCPT : number of accepted step,
! SOL%NREJCT : number of rejected steps,
! SOL%NFESIG : number of function evaluations used in estimating
! the spectral radius of F'_E,
! SOL%MAXM : maximum number of stages used.
!-----------------------------------------------------------------
!
! SPECIFICATION OF THE TASK:
!
! Only a few quantities are required to specify the task and
! initialize the integration. This is done with a call
!
! SOL = IRKC_SET(T0,Y0,TEND).
!
! This says that the integration is to start at T0 with a vector Y0
! of NEQN components as initial value and go to TEND. It also says
! that the solution structure is to be called SOL. These arguments
! must appear, and in the order shown, but the remaining, optional
! arguments can follow in any order because they are specified using
! keywords. The solver must be told how many PDEs there are. This is
! 1 by default and any other value must be supplied with the keyword
! NPDES. For example, if there are 3 PDEs, the call above is changed
! to
!
! SOL = IRKC_SET(T0,Y0,TEND,NPDES=3).
!
! The most commonly used options are the error tolerances. RKC
! provides for a scalar relative error tolerance and a vector of
! absolute error tolerances. To leading order the storage required
! is a multiple of NEQN. A guiding principle of RKC, and especially
! IRKC, is minimize this multiple. Quite often users have scaled the
! variables so that a scalar absolute error tolerance is
! appropriate. If not, they can always rescale the variables so as
! to do away with the need for an array of NEQN absolute error
! tolerances. Accordingly, we have chosen to implement only a scalar
! absolute error tolerance in IRKC. This decision makes the solver
! easier to use and simplifies the program. The default relative
! error tolerance is 10^{-2} and the default absolute error
! tolerance is 10^{-3}. The call just illustrated causes the
! solver to use these default values. Other values are imposed with
! the keywords RE and AE. For example, to use a relative error
! tolerance of 10^{-3} and the default absolute error tolerance,
! the call is changed to
!
! SOL = IRKC_SET(T0,Y0,TEND,NPDES=3,RE=1D-3).
!
! By default IRKC takes one step at a time, but it can be instructed
! to return only after reaching TEND by giving the keyword ONE_STEP
! the value .FALSE. The methods for handling the explicit term F_E
! involve an approximate bound on the spectral radius of the Jacobian
! F'_E. This can be supplied with a function in a manner described
! below, but the default is to have the solver compute a bound.
! The cost of doing this can be reduced substantially when the
! Jacobian is constant by giving the keyword CONSTANT_J the value
! .TRUE. Sometimes it is useful to impose a maximum step size.
! This is done with the keyword HMAX. IRKC selects an initial step
! size automatically, but a value can be supplied with the keyword H0.
!
! It is sometimes useful to reset quantities and continue integrating.
! This is done by replacing the initial data T0,Y0 in the call list of
! IRKC_SET with the solution structure SOL. If the required argument
! TEND or any of the optional arguments are changed, the new values
! replace those stored in SOL and SOL%DONE is changed to .FALSE.
! Of course, NPDES cannot be changed. For example, we can instruct the
! solver to quit returning at every step with
!
! SOL = IRKC_SET(SOL,TEND,ONE_STEP=.FALSE.)
!
! and then call the solver again to continue on to TEND.
!
! Unless instructed to the contrary, the solver will print a message
! and stop when a fatal error occurs. This response to a fatal error
! can be changed with the optional argument STOP_ON_ERROR. Setting it
! to .FALSE. will cause the solver to return with a positive value of
! the integer SOL%ERR_FLAG that indicates the nature of the error.
! In this way a user can prevent an unwelcome termination of the run.
! Of course, if this report of a fatal error is ignored and the solver
! is called again with a positive value of SOL%ERR_FLAG, it will print
! a message and stop.
!----------------------------------------------------------------------
!
! DEFINING THE EQUATIONS:
!
! The differential equations are supplied as subroutines to IRKC. A
! typical invocation of IRKC looks like
!
! CALL IRKC(SOL,F_E,F_I).
!
! All three arguments in this call are required. The solution
! structure SOL is used for both input and output. F_E is the name
! of a subroutine for evaluating the explicit part of the right-hand
! side of the system of ODEs in (1). It is supplied just as for RKC,
! i.e., there is a subroutine of the form F_E(NEQN,T,Y,DY) that
! accepts a vector Y of length NEQN, evaluates F_E(t,y), and
! returns it as a vector DY of length NEQN.
! As explained previously, the term to be handled implicitly must
! be defined in a particular way that we now discuss more fully.
!
! Let NPDES be the number of PDEs. The ODEs must be coded in blocks
! that correspond to grid points. Specifically,
! for I = 1, NPDES+1, 2*NPDES+1, ..., NEQN-NPDES+1, the equations with
! indices I, I+1, ..., I+NPDES-1 must correspond to a single grid point.
! Accordingly there is to be a subroutine of the form
! F_I(GRID_POINT,NPDES,T,YG,DYG,WANT_JAC,JAC). For an index
! I = GRID_POINT, it evaluates F_I(T,YG) for YG = Y(I:I+NPDES-1).
! This value is returned as a vector DYG of NPDES components. The
! solver also requires the Jacobian of this function, a matrix JAC of
! NPDES by NPDES entries. It is convenient to have this computation in
! the subroutine where F_I is evaluated, but it does not have to be
! done every time that F_I is evaluated. The logical variable WANT_JAC
! is used to inform the subroutine when JAC is to be formed along with
! DYG.
!
! By default the solver approximates the spectral radius of the
! Jacobian F'_E using a nonlinear power method. This is convenient
! and often works well, but it can fail. When it is not too much
! trouble to supply a function that returns an upper bound for this
! spectral radius of roughly the correct size, this should be done
! because the integration is then faster, more reliable, and uses
! less storage. This function must have the form SR(NEQN,T,Y). Its
! name is supplied to the solver as an optional fourth argument, but
! in the circumstances there is no point to using a keyword, so the
! call has the form
!
! CALL IRKC(SOL,F_E,F_I,SR).
!-------------------------------------------------------------------
!
! Authors: L.F. Shampine
! Mathematics Department
! Southern Methodist University
! Dallas, Texas 75275-0156
! USA
! e-mail: lshampin@mail.smu.edu
!
! B.P. Sommeijer and J.G. Verwer
! Centre for Mathematics and Computer Science (CWI)
! Kruislaan 413
! 1098 SJ Amsterdam
! The Netherlands
! e-mail: bsom@cwi.nl, Jan.Verwer@cwi.nl
!
! Details of the methods used and the performance of IRKC can be
! found in
!
! L.F. Shampine. B.P. Sommeijer and J.G. Verwer
! IRKC: an IMEX Solver for Stiff Diffusion-Reaction PDEs.
!
! J. Comput. Appl. Math. 196 (2006), pp. 485 - 497.
! Technical Report MAS-E0513, CWI, Amsterdam, 2005
! (http://db.cwi.nl/rapporten/index.php?jaar=2005&dept=13)
!
! This source code for IRKC and some examples can also be obtained
! by anonymous ftp from the address ftp://ftp.cwi.nl/pub/bsom/irkc.
!---------------------------------------------------------------------
MODULE IRKC_M
IMPLICIT NONE
! Declare everything in the module to be PRIVATE unless specifically
! declared as PUBLIC.
PRIVATE
TYPE, PUBLIC :: IRKC_SOL
INTEGER :: NEQN,NPDES
DOUBLE PRECISION :: T,TEND,HLAST,RTOL,ATOL,HMAX,H0,SPRAD
DOUBLE PRECISION, DIMENSION(:), POINTER :: Y,YLAST,YP,YPLAST
INTEGER :: NFE,NFI,NSTEPS,NACCPT,NREJCT,NFESIG,MAXM,ERR_FLAG
LOGICAL :: DONE,ONE_STEP,CONSTANT_J,STOP_ON_ERROR
END TYPE IRKC_SOL
! A structure SOL of type IRKC_SOL contains information
! about the numerical solution. Of most direct interest
! are the fields that hold the current value t of the
! independent variable and the NEQN components of the
! solution y(t).
!
! SOL%T -- t
!
! SOL%Y(*) -- y(t) (vector of NEQN components)
!
! The logical quantity SOL%DONE indicates whether
! the integration is complete.
!
! After a step by IRKC to SOL%T of size SOL%HLAST, the
! solution structure SOL contains all the information
! needed by the IRKC_VAL function to evaluate an
! approximate solution YARG(*) for any argument ARG in
! the interval [SOL%T-SOL%HLAST, SOL%T] that has the
! same order of accuracy as SOL%Y(*).
!
! Statistics about the integration are available as
! the integer fields
!
! SOL%NFE -- number of evaluations of F_E
! SOL%NFI -- number of evaluations of F_I
! SOL%NSTEPS -- number of steps
! SOL%NACCPT -- number of accepted steps
! SOL%NREJCT -- number of rejected steps
! SOL%NFESIG -- number of evaluations of F_E used
! in estimating the spectral radius
! SOL%MAXM -- maximum number of stages used
!
! They can be displayed conveniently with the auxiliary
! subroutine IRKC_STATS.
INTERFACE IRKC_SET
MODULE PROCEDURE SET1,SET2
END INTERFACE
! Global variables within module
DOUBLE PRECISION :: UROUND=EPSILON(1D0),SQRTU
LOGICAL :: HAVE_SPCRAD,STOP_ON_ERROR
INTEGER :: NFE,NFI,NSTEPS,NACCPT,NREJCT,NFESIG,MAXM,MMAX
DOUBLE PRECISION :: TDIR,HMAX,HLAST,RTOL,ATOL,HMUS1
! Externally visible subroutines and functions:
PUBLIC :: IRKC, IRKC_SET, IRKC_VAL, IRKC_STATS
CONTAINS
!*******************************************************
!*** PUBLIC SUBROUTINES/FUNCTIONS ***
!*******************************************************
SUBROUTINE IRKC(SOL,F_E,F_I,SPCRAD)
TYPE(IRKC_SOL) :: SOL
DOUBLE PRECISION, OPTIONAL :: SPCRAD
EXTERNAL F_E,F_I,SPCRAD
INTEGER :: NEQN,NPDES
DOUBLE PRECISION :: T,TEND
DOUBLE PRECISION, DIMENSION(SOL%NEQN) :: YNEW
LOGICAL :: RHO_CONVG_FAIL,IT_CONVG_FAIL,ONE_STEP,CONSTANT_J,&
LAST_STEP
INTEGER :: M,I,IER,ERR_FLAG
DOUBLE PRECISION :: JACNRM,EST,ERR,FAC,H,HMIN,TEMP1,TEMP2,TEMP3
! In the one-step mode, a few quantities need to be kept
! from one call to the next:
INTEGER, SAVE :: NSTSIG
DOUBLE PRECISION, SAVE :: HOLD,ERROLD,ABSH,SPRAD
DOUBLE PRECISION, ALLOCATABLE, SAVE :: EV(:)
LOGICAL, SAVE :: NEWSPC,JACATT
IF (SOL%DONE) THEN
PRINT *,' Cannot call IRKC after integration is done.'
STOP
END IF
ERR_FLAG = SOL%ERR_FLAG
IF ( (SOL%NFE > 0) .AND. (ERR_FLAG > 0) ) THEN
PRINT *,' Cannot call IRKC after a fatal error.'
STOP
END IF
! Local variables for quantities in SOL
NEQN = SOL%NEQN
NPDES = SOL%NPDES
T = SOL%T
TEND = SOL%TEND
TDIR = SIGN(1D0,TEND - T)
HMAX = SOL%HMAX
RTOL = SOL%RTOL
ATOL = SOL%ATOL
ONE_STEP = SOL%ONE_STEP
CONSTANT_J = SOL%CONSTANT_J
STOP_ON_ERROR = SOL%STOP_ON_ERROR
HLAST = SOL%HLAST
NFE = SOL%NFE
NFI = SOL%NFI
NSTEPS = SOL%NSTEPS
NACCPT = SOL%NACCPT
NREJCT = SOL%NREJCT
NFESIG = SOL%NFESIG
MAXM = SOL%MAXM
! Load a work array.
YNEW = SOL%Y
! Initialize on the first call.
IF (NFE == 0) THEN
IF ((RTOL > 0.1D0) .OR. (RTOL < 10D0*UROUND)) THEN
IF (STOP_ON_ERROR) THEN
CALL REPORT_ERRORS(1)
ELSE
SOL%ERR_FLAG = 1
RETURN
END IF
END IF
IF (ATOL <= 0D0 ) THEN
IF (STOP_ON_ERROR) THEN
CALL REPORT_ERRORS(2)
ELSE
SOL%ERR_FLAG = 2
RETURN
END IF
END IF
HAVE_SPCRAD = PRESENT(SPCRAD)
IF (.NOT. HAVE_SPCRAD) THEN
ALLOCATE(EV(NEQN),STAT=IER)
IF (IER /= 0) THEN
IF (STOP_ON_ERROR) THEN
CALL REPORT_ERRORS(7)
ELSE
SOL%ERR_FLAG = 7
RETURN
END IF
END IF
END IF
SQRTU = SQRT(UROUND)
MMAX = NINT(SQRT(RTOL/(10D0*UROUND)))
MMAX = MAX(MMAX,2)
JACATT = .FALSE.
NSTSIG = 0
NEWSPC = .TRUE.
CALL F_E(NEQN,T,YNEW,SOL%YP)
NFE = NFE + 1
! Get maximum norm of Jacobian of F_I for computation
! of initial step size.
CALL ADD_F_I(NEQN,T,YNEW,SOL%YP,NPDES,F_I,JACNRM)
HMIN = 10D0*UROUND*MAX(ABS(T),ABS(TEND))
END IF
! Start of loop for taking a step:
TAKE_A_STEP: DO
! Estimate the spectral radius of the Jacobian
! when NEWSPC = .TRUE. A convergence failure
! in RHO is reported by RHO_CONVG_FAIL.
IF (NEWSPC) THEN
IF (HAVE_SPCRAD) THEN
SPRAD = SPCRAD(NEQN,T,YNEW)
ELSE
CALL RHO(F_E,NEQN,T,YNEW,SOL%YP,SOL%YLAST,SOL%YPLAST,EV,&
SPRAD,RHO_CONVG_FAIL)
IF (RHO_CONVG_FAIL) THEN
IF (STOP_ON_ERROR) THEN
CALL REPORT_ERRORS(4)
ELSE
SOL%ERR_FLAG = 4
RETURN
END IF
END IF
! The value SOL%YP returned by RHO corresponds to F_E only.
CALL ADD_F_I(NEQN,T,YNEW,SOL%YP,NPDES,F_I)
END IF
JACATT = .TRUE.
END IF
! Compute an initial step size.
IF (NSTEPS == 0) THEN
IF (SOL%H0 > 0D0) THEN
ABSH = MIN(SOL%H0,HMAX)
ELSE
ABSH = HMAX
IF (MAX(SPRAD,JACNRM)*ABSH > 1D0) THEN
ABSH = 1D0/MAX(SPRAD,JACNRM)
END IF
END IF
ABSH = MAX(ABSH,HMIN)
SOL%YLAST = YNEW + ABSH*SOL%YP
CALL F_E(NEQN,T+ABSH,SOL%YLAST,SOL%YPLAST)
NFE = NFE + 1
CALL ADD_F_I(NEQN,T+ABSH,SOL%YLAST,SOL%YPLAST,NPDES,F_I)
EST = RMSNORM( (SOL%YPLAST - SOL%YP) / (ATOL + RTOL*ABS(YNEW)) )
EST = ABSH*SQRT(EST/NEQN)
IF (0.1D0*ABSH < HMAX*SQRT(EST)) THEN
ABSH = MAX(0.1D0*ABSH/SQRT(EST),HMIN)
ELSE
ABSH = HMAX
END IF
END IF
! print *,'SPRAD = ',SPRAD
! Adjust step size and determine number of stages M.
LAST_STEP = .FALSE.
IF (1.1D0*ABSH >= ABS(TEND - T)) THEN
ABSH = ABS(TEND - T)
LAST_STEP = .TRUE.
END IF
M = 1 + INT(SQRT(1.54D0*ABSH*SPRAD + 1D0))
! Limit M to MMAX to control the growth of roundoff error.
IF (M > MMAX) THEN
M = MMAX
ABSH = (M**2 - 1)/(1.54D0*SPRAD)
LAST_STEP = .FALSE.
END IF
MAXM = MAX(M,MAXM)
! A tentative solution at T+H is returned in
! SOL%Y and its slope is evaluated in SOL%YLAST.
H = TDIR*ABSH
HMIN = 10D0*UROUND*MAX(ABS(T),ABS(T+H))
CALL STEP(NEQN,F_E,NPDES,F_I,T,YNEW,&
H,M,SOL%Y,SOL%YLAST,SOL%YPLAST,&
IT_CONVG_FAIL,ERR_FLAG)
IF (ERR_FLAG > 0) THEN
IF (STOP_ON_ERROR) THEN
CALL REPORT_ERRORS(ERR_FLAG)
ELSE
SOL%ERR_FLAG = ERR_FLAG
RETURN
END IF
END IF
IF (IT_CONVG_FAIL) THEN
ERR = 10D0 ! Dummy value to trigger failed step.
ELSE
! Here YNEW is y(T) and SOL%Y is the tentative y(T+H).
! Reuse of storage has y'(T) stored in SOL%YP and
! y'(T+H) is to be stored in SOL%YLAST.
CALL F_E(NEQN,T+H,SOL%Y,SOL%YLAST)
NFE = NFE + 1
CALL ERR_EST(NEQN,NPDES,T,H,YNEW,&
SOL%YP,SOL%Y,SOL%YLAST,F_I,ERR,ERR_FLAG)
IF (ERR_FLAG > 0) THEN
IF (STOP_ON_ERROR) THEN
CALL REPORT_ERRORS(ERR_FLAG)
ELSE
SOL%ERR_FLAG = ERR_FLAG
RETURN
END IF
END IF
END IF
NSTEPS = NSTEPS + 1
IF (ERR > 1D0) THEN
! Step is rejected.
NREJCT = NREJCT + 1
IF (IT_CONVG_FAIL) THEN
ABSH = ABSH/2D0
ELSE
ABSH = 0.8D0*ABSH/SQRT(ERR)
END IF
IF (ABSH < HMIN) THEN
IF (STOP_ON_ERROR) THEN
CALL REPORT_ERRORS(3)
ELSE
SOL%ERR_FLAG = 3
RETURN
END IF
ELSE
NEWSPC = .NOT. JACATT
CYCLE TAKE_A_STEP
END IF
END IF
! Step is accepted.
NACCPT = NACCPT + 1
T = T + H
JACATT = CONSTANT_J
NSTSIG = MOD(NSTSIG+1,25)
NEWSPC = .FALSE.
IF (HAVE_SPCRAD .OR. (NSTSIG == 0)) THEN
NEWSPC = .NOT. JACATT
END IF
! Update stored quantities.
HLAST = H
DO I = 1,NEQN
TEMP3 = SOL%YLAST(I)
SOL%YLAST(I) = YNEW(I)
YNEW(I) = SOL%Y(I)
SOL%YPLAST(I) = SOL%YP(I)
SOL%YP(I) = TEMP3
END DO
! Compute new step size.
FAC = 10D0
IF (NACCPT == 1) THEN
TEMP2 = SQRT(ERR)
IF (0.8D0 < FAC*TEMP2) THEN
FAC = 0.8D0/TEMP2
END IF
ELSE
TEMP1 = 0.8D0*ABSH*SQRT(ERROLD)
TEMP2 = ABS(HOLD)*ERR
IF (TEMP1 < FAC*TEMP2) THEN
FAC = TEMP1/TEMP2
END IF
END IF
ABSH = MAX(0.1D0,FAC)*ABSH
ABSH = MAX(HMIN,MIN(HMAX,ABSH))
ERROLD = ERR
HOLD = H
H = TDIR*ABSH
IF (LAST_STEP .OR. ONE_STEP) THEN
SOL%DONE = LAST_STEP
EXIT TAKE_A_STEP
END IF
! End of loop for taking a step:
END DO TAKE_A_STEP
! Load working variables into SOL for return
SOL%T = T
SOL%HLAST = HLAST
SOL%NFE = NFE
SOL%NFI = NFI
SOL%NSTEPS = NSTEPS
SOL%NACCPT = NACCPT
SOL%NREJCT = NREJCT
SOL%NFESIG = NFESIG
SOL%MAXM = MAXM
SOL%SPRAD = SPRAD
IF (SOL%DONE .AND. (.NOT. HAVE_SPCRAD) ) THEN
DEALLOCATE(EV,STAT=IER)
IF (IER /= 0) THEN
IF (STOP_ON_ERROR) THEN
CALL REPORT_ERRORS(7)
ELSE
SOL%ERR_FLAG = 7
RETURN
END IF
END IF
END IF
END SUBROUTINE IRKC
!--------------BEGIN GENERIC FUNCTION IRKC_SET--------------
FUNCTION SET1(T0,Y0,TEND,RE,AE,ONE_STEP,CONSTANT_J,&
STOP_ON_ERROR,NPDES,HMAX,H0) RESULT(SOL)
DOUBLE PRECISION :: T0,Y0(:),TEND
INTEGER, OPTIONAL :: NPDES
DOUBLE PRECISION, OPTIONAL :: RE,AE,HMAX,H0
LOGICAL, OPTIONAL :: ONE_STEP,CONSTANT_J,STOP_ON_ERROR
TYPE(IRKC_SOL) :: SOL
INTEGER :: NEQN,IER
SOL%T = T0
SOL%TEND = TEND
NEQN = SIZE(Y0)
SOL%NEQN = NEQN
ALLOCATE(SOL%Y(NEQN),SOL%YP(NEQN),SOL%YLAST(NEQN),&
SOL%YPLAST(NEQN),STAT=IER)
IF (IER /= 0) THEN
PRINT *,'A storage allocation error occurred in IRKC_SET.'
STOP
END IF
SOL%Y = Y0
SOL%YP = 0D0
SOL%YLAST = 0D0
SOL%YPLAST = 0D0
IF (PRESENT(RE)) THEN
SOL%RTOL = RE
ELSE
SOL%RTOL = 1D-2
END IF
IF (PRESENT(AE)) THEN
SOL%ATOL = AE
ELSE
SOL%ATOL = 1D-3
END IF
IF (PRESENT(ONE_STEP)) THEN
SOL%ONE_STEP = ONE_STEP
ELSE
SOL%ONE_STEP = .TRUE.
END IF
IF (PRESENT(CONSTANT_J)) THEN
SOL%CONSTANT_J = CONSTANT_J
ELSE
SOL%CONSTANT_J = .FALSE.
END IF
IF (PRESENT(STOP_ON_ERROR)) THEN
SOL%STOP_ON_ERROR = STOP_ON_ERROR
ELSE
SOL%STOP_ON_ERROR = .TRUE.
END IF
SOL%ERR_FLAG = 0
IF (PRESENT(NPDES)) THEN
SOL%NPDES = NPDES
ELSE
SOL%NPDES = 1
END IF
IF (PRESENT(HMAX)) THEN
SOL%HMAX = HMAX
ELSE
SOL%HMAX = ABS(TEND - T0)
END IF
IF (PRESENT(H0)) THEN
SOL%H0 = ABS(H0)
ELSE
SOL%H0 = -1D0
END IF
SOL%NFE = 0
SOL%NFI = 0
SOL%NSTEPS = 0
SOL%NACCPT = 0
SOL%NREJCT = 0
SOL%NFESIG = 0
SOL%MAXM = 0
SOL%HLAST = 0D0
SOL%DONE = .FALSE.
END FUNCTION SET1
FUNCTION SET2(SOLIN,TEND,RE,AE,ONE_STEP,CONSTANT_J,&
STOP_ON_ERROR,NPDES,HMAX,H0) RESULT(SOL)
TYPE(IRKC_SOL) :: SOLIN,SOL
DOUBLE PRECISION :: TEND
DOUBLE PRECISION, OPTIONAL :: RE,AE,HMAX,H0
LOGICAL, OPTIONAL :: ONE_STEP,CONSTANT_J,STOP_ON_ERROR
INTEGER, OPTIONAL :: NPDES
IF (PRESENT(NPDES)) THEN
IF (NPDES /= SOLIN%NPDES) THEN
PRINT *,' Cannot change NPDES.'
STOP
END IF
END IF
! Is this a new TEND?
IF (ABS(TEND - SOLIN%TEND) > 0D0) THEN
! Is this a change of direction?
IF (SIGN(1D0,TEND - SOLIN%TEND)*SOLIN%HLAST < 0) THEN
PRINT *,' Cannot change direction without restarting.'
STOP
END IF
SOLIN%TEND = TEND ! Reset in SOLIN for later copy to SOL.
END IF
SOL = SOLIN
IF (PRESENT(RE)) SOL%RTOL = RE
IF (PRESENT(AE)) SOL%ATOL = AE
IF (PRESENT(ONE_STEP)) SOL%ONE_STEP = ONE_STEP
IF (PRESENT(CONSTANT_J)) SOL%CONSTANT_J = CONSTANT_J
IF (PRESENT(STOP_ON_ERROR)) SOL%STOP_ON_ERROR = STOP_ON_ERROR
IF (PRESENT(HMAX)) SOL%HMAX = HMAX
IF (PRESENT(H0)) SOL%H0 = ABS(H0)
SOL%DONE = .FALSE.
END FUNCTION SET2
!----------------END GENERIC FUNCTION IRKC_SET--------------
FUNCTION IRKC_VAL(SOL,ARG) RESULT(YARG)
! IRKC_VAL is used to compute approximate solutions at specific t
! and to compute cheaply the large number of approximations that
! may be needed for plotting or locating when events occur.
! After a step by IRKC to SOL%T of size SOL%HLAST, the solution
! structure SOL contains all the information needed by IRKC_VAL to
! evaluate an approximate solution YARG(*) for any argument ARG
! in the interval [SOL%T-SOL%HLAST, SOL%T] that has the same order
! of accuracy as SOL%Y(*).
TYPE(IRKC_SOL) :: SOL
DOUBLE PRECISION :: ARG
DOUBLE PRECISION, DIMENSION(SOL%NEQN) :: YARG
DOUBLE PRECISION :: TLAST,A1,A2,B1,B2,S
TLAST = SOL%T - SOL%HLAST
S = (ARG - TLAST) / SOL%HLAST
A1 = (1D0 + 2D0*S)*(S - 1D0)**2
A2 = (3D0 - 2D0*S)*S**2
B1 = SOL%HLAST*S*(S - 1D0)**2
B2 = SOL%HLAST*(S - 1D0)*S**2
YARG = A1*SOL%YLAST + A2*SOL%Y + B1*SOL%YPLAST + B2*SOL%YP
END FUNCTION IRKC_VAL
SUBROUTINE IRKC_STATS(SOL)
TYPE(IRKC_SOL) :: SOL
INTEGER :: ITEMP
ITEMP = DBLE(SOL%NFI)/( DBLE(SOL%NEQN)/DBLE(SOL%NPDES) )
PRINT *,' '
PRINT *,' Integration statistics: '
PRINT *,' '
PRINT *,' Evaluations of F_E = ', &
SOL%NFE
PRINT *,' Evaluations of F_I / (NEQN/NPDES) = ', &
ITEMP
PRINT *,' Number of steps = ', &
SOL%NSTEPS
PRINT *,' Number of accepted steps = ', &
SOL%NACCPT
PRINT *,' Number of rejected steps = ', &
SOL%NREJCT
PRINT *,' Evaluations of F_E for spectral radius = ', &
SOL%NFESIG
PRINT *,' Maximum number of stages used = ', &
SOL%MAXM
PRINT *,' '
END SUBROUTINE IRKC_STATS
!*******************************************************
!*** PRIVATE SUBROUTINES/FUNCTIONS ***
!*******************************************************
SUBROUTINE ADD_F_I(NEQN,T,Y,YP,NPDES,F_I,JACNRM)
! Evaluate the terms to be handled implicitly
! and add in blocks of size NPDEs. Optionally
! compute the maximum norm of the Jacobian.
INTEGER :: NEQN,NPDES,I
DOUBLE PRECISION :: T,Y(NEQN),YP(NEQN)
DOUBLE PRECISION, OPTIONAL :: JACNRM
DOUBLE PRECISION :: TEMP(NPDES),JAC(NPDES,NPDES)
EXTERNAL F_I
IF (.NOT. PRESENT(JACNRM)) THEN
DO I = 1,NEQN,NPDES
CALL F_I(I,NPDES,T,Y(I:I+NPDES-1),TEMP,.FALSE.,JAC)
NFI = NFI + 1
YP(I:I+NPDES-1) = YP(I:I+NPDES-1) + TEMP
END DO
ELSE
JACNRM = 0D0
DO I = 1,NEQN,NPDES
CALL F_I(I,NPDES,T,Y(I:I+NPDES-1),TEMP,.TRUE.,JAC)
NFI = NFI + 1
YP(I:I+NPDES-1) = YP(I:I+NPDES-1) + TEMP
! Compute maximum norm of the matrix JAC.
JACNRM = MAX(JACNRM,MAXVAL( SUM(ABS(JAC),DIM=2) ))
END DO
END IF
END SUBROUTINE ADD_F_I
SUBROUTINE STEP(NEQN,F_E,NPDES,F_I,T,YN,H,M,Y,YJM1,YJM2,&
IT_CONVG_FAIL,ERR_FLAG)
! Take an implicit step of size H from T to T+H
! to get Y(*).
INTEGER :: NEQN,M,NPDES,ERR_FLAG
DOUBLE PRECISION :: T,H
DOUBLE PRECISION, DIMENSION(NEQN) :: YN,Y,YJM1,YJM2
LOGICAL :: IT_CONVG_FAIL
EXTERNAL F_E,F_I
INTEGER :: J,I
DOUBLE PRECISION :: AJM1,ARG,BJ,BJM1,BJM2,DZJ,DZJM1,&
DZJM2,D2ZJ,D2ZJM1,D2ZJM2,MU,MUS,NU,TEMP1,TEMP2,THJ,&
THJM1,THJM2,W0,W1,ZJ,ZJM1,ZJM2,GAMMA,MUS1
DOUBLE PRECISION :: RHS(NEQN),DYE_0(NEQN),DYE_JM1(NEQN),&
DYI_0(NEQN),DYI(NEQN,3),JAC(NPDES,NPDES)
! Swap columns of DYI by swapping these pointers:
INTEGER :: PY,PY_JM1,PY_JM2,ITEMP
PY = 1
PY_JM1 = 2
PY_JM2 = 3
! Flag to report convergence failure.
IT_CONVG_FAIL = .FALSE.
W0 = 1D0 + 2D0/(13D0*M**2)
TEMP1 = W0**2 - 1D0
TEMP2 = SQRT(TEMP1)
ARG = M*LOG(W0 + TEMP2)
W1 = SINH(ARG)*TEMP1 / (COSH(ARG)*M*TEMP2 - W0*SINH(ARG))
BJM1 = 1D0/W0
BJM2 = 1D0/(2D0*W0)**2
! Evaluate the first stage.
! FN of explicit step is recomputed because
! in calling program it includes the implicit
! part which we need here in its own right.
CALL F_E(NEQN,T,YN,DYE_0)
NFE = NFE + 1
DO I = 1,NEQN,NPDES
CALL F_I(I,NPDES,T,YN(I:I+NPDES-1),&
DYI_0(I:I+NPDES-1),.FALSE.,JAC)
NFI = NFI + 1
END DO
DYI(:,PY_JM2) = DYI_0 ! Initialize for j = 2
YJM2 = YN
MUS = W1*BJM1
MUS1 = MUS
HMUS1 = H*MUS1 ! Global variable
RHS = YN + HMUS1*DYE_0
YJM1 = YN
CALL STAGE(NEQN,NPDES,F_I,T+HMUS1,RHS,YJM1,&
DYI(:,PY_JM1),IT_CONVG_FAIL,ERR_FLAG)
IF (IT_CONVG_FAIL .OR. ERR_FLAG > 0) RETURN
THJM2 = 0D0
THJM1 = MUS
ZJM1 = W0
ZJM2 = 1D0
DZJM1 = 1D0
DZJM2 = 0D0
D2ZJM1 = 0D0
D2ZJM2 = 0D0
! Evaluate stages j = 2,...,m.
DO J = 2, M
ZJ = 2D0*W0*ZJM1 - ZJM2
DZJ = 2D0*W0*DZJM1 - DZJM2 + 2D0*ZJM1
D2ZJ = 2D0*W0*D2ZJM1 - D2ZJM2 + 4D0*DZJM1
BJ = D2ZJ/DZJ**2
AJM1 = 1D0 - ZJM1*BJM1
MU = 2D0*W0*BJ/BJM1
NU = - BJ/BJM2
MUS = MU*W1/W0
GAMMA = - AJM1*MUS
CALL F_E(NEQN,T + H*THJM1,YJM1,DYE_JM1)
NFE = NFE + 1
RHS = (1D0 - MU - NU)*YN + MU*YJM1 + NU*YJM2 + &
H*MUS*DYE_JM1 + H*GAMMA*DYE_0 + &
(GAMMA - (1D0 - MU - NU)*MUS1)*H*DYI_0 &
- NU*HMUS1*DYI(:,PY_JM2)
Y = YJM1 ! Guess for next stage
THJ = MU*THJM1 + NU*THJM2 + MUS*(1D0 - AJM1)
CALL STAGE(NEQN,NPDES,F_I,T+H*THJ,&
RHS,Y,DYI(:,PY),IT_CONVG_FAIL,ERR_FLAG)
IF (IT_CONVG_FAIL .OR. ERR_FLAG > 0) RETURN
! Shift the data for the next stage.
IF (J < M) THEN
YJM2 = YJM1
YJM1 = Y
! Swap column pointers.
ITEMP = PY_JM2
PY_JM2 = PY_JM1
PY_JM1 = PY
PY = ITEMP
THJM2 = THJM1
THJM1 = THJ
BJM2 = BJM1
BJM1 = BJ
ZJM2 = ZJM1
ZJM1 = ZJ
DZJM2 = DZJM1
DZJM1 = DZJ
D2ZJM2 = D2ZJM1
D2ZJM1 = D2ZJ
END IF
END DO
END SUBROUTINE STEP
SUBROUTINE STAGE(NEQN,NPDES,F_I,TNJ,RHS,YS,DYS,&
IT_CONVG_FAIL,ERR_FLAG)
INTEGER :: NEQN,NPDES,ERR_FLAG