-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_wo_center.py
239 lines (198 loc) · 7.44 KB
/
train_wo_center.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import argparse
import os
import time
import matplotlib
import matplotlib.pyplot as plt
import torch
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torchvision
from torchvision import datasets
from eval import get_result
from models import build_model
matplotlib.use('Agg')
input_size = (128, 128)
parser = argparse.ArgumentParser(description="Train on market1501")
parser.add_argument("--data-dir", default='data', type=str)
parser.add_argument("--no-cuda", action="store_true")
parser.add_argument("--gpu-id", default=0, type=int)
parser.add_argument("--lr", default=0.1, type=float)
parser.add_argument("--interval", '-i', default=10, type=int)
parser.add_argument('--resume', '-r', action='store_true')
parser.add_argument('--model', type=str, default="resnet50_ibn_a")
parser.add_argument('--pretrained', action="store_true")
args = parser.parse_args()
# device
device = "cuda:{}".format(
args.gpu_id) if torch.cuda.is_available() and not args.no_cuda else "cpu"
if torch.cuda.is_available() and not args.no_cuda:
cudnn.benchmark = True
# data loading
root = args.data_dir
train_dir = os.path.join(root, "train")
test_dir = os.path.join(root, "val")
transform_train = torchvision.transforms.Compose([
torchvision.transforms.RandomHorizontalFlip(),
torchvision.transforms.Resize(input_size),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize([0.3568, 0.3141, 0.2781],
[0.1752, 0.1857, 0.1879])
])
transform_test = torchvision.transforms.Compose([
torchvision.transforms.Resize(input_size),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize([0.3568, 0.3141, 0.2781],
[0.1752, 0.1857, 0.1879])
])
train_datasets = datasets.ImageFolder(train_dir, transform=transform_train)
test_datasets = datasets.ImageFolder(test_dir, transform=transform_test)
trainloader = torch.utils.data.DataLoader(train_datasets,
batch_size=64,
shuffle=True,
num_workers=4)
testloader = torch.utils.data.DataLoader(test_datasets,
batch_size=64,
shuffle=True,
num_workers=4)
num_classes = len(trainloader.dataset.classes)
##################
# net definition #
##################
start_epoch = 0
net = build_model(name=args.model, num_classes=num_classes,
pretrained=args.pretrained)
if args.resume:
assert os.path.isfile(
"./weights/best.pt"), "Error: no checkpoint file found!"
print('Loading from checkpoint/best.pt')
checkpoint = torch.load("./weights/best.pt")
# import ipdb; ipdb.set_trace()
net_dict = checkpoint['net_dict']
net.load_state_dict(net_dict)
best_acc = checkpoint['acc']
start_epoch = checkpoint['epoch']
net.to(device)
# loss and optimizer
criterion_model = torch.nn.CrossEntropyLoss()
optimizer_model = torch.optim.SGD(
net.parameters(), args.lr) # from 3e-4 to 3e-5
scheduler = optim.lr_scheduler.StepLR( # best lr 1e-3
optimizer_model, step_size=20, gamma=0.1)
best_acc = 0.
# train function for each epoch
def train(epoch):
print('=' * 30, "Training", "=" * 30)
net.train()
training_loss = 0.
train_loss = 0.
correct = 0
total = 0
interval = args.interval
start = time.time()
for idx, (inputs, labels) in enumerate(trainloader):
# forward
inputs, labels = inputs.to(device), labels.to(device)
outputs = net(inputs)
loss = criterion_model(outputs, labels)
# backward
optimizer_model.zero_grad()
loss.backward()
optimizer_model.step()
# accumurating
training_loss += loss.item()
train_loss += loss.item()
correct += outputs.max(dim=1)[1].eq(labels).sum().item()
total += labels.size(0)
# print
if (idx + 1) % interval == 0:
end = time.time()
print(
"epoch:{:d}|step:{:03d}|time:{:03.2f}s|Loss:{:03.5f}|Acc:{:02.3f}%"
.format(epoch, idx, end - start, training_loss / interval,
100. * correct / total))
training_loss = 0.
start = time.time()
return train_loss / len(trainloader), 1. - correct / total
def test(epoch):
global best_acc
# net.eval()
test_loss = 0.
correct = 0
total = 0
start = time.time()
with torch.no_grad():
for idx, (inputs, labels) in enumerate(testloader):
inputs, labels = inputs.to(device), labels.to(device)
outputs = net(inputs)
loss = criterion_model(outputs, labels)
test_loss += loss.item()
correct += outputs.max(dim=1)[1].eq(labels).sum().item()
total += labels.size(0)
print('=' * 30, "Testing", "=" * 30)
end = time.time()
print(
"epoch:{:d}\t time:{:.2f}s\t Loss:{:.5f}\t Correct:{}/{}\t Acc:{:.3f}%"
.format(epoch, end - start, test_loss / len(testloader), correct,
total, 100. * correct / total))
# saving checkpoint
acc = 100. * correct / total
if not os.path.isdir('weights'):
os.mkdir('weights')
save_path = os.path.join("weights", args.model)
if not os.path.exists(save_path):
os.makedirs(save_path)
if acc > best_acc:
best_acc = acc
print("Saving parameters to checkpoint/best.pt")
checkpoint = {
'net_dict': net.state_dict(),
'acc': acc,
'epoch': epoch,
}
torch.save(checkpoint,
'./weights/%s/%s_best.pt' % (args.model, args.model))
torch.save(checkpoint,
'./weights/%s/%s_last.pt' % (args.model, args.model))
else:
checkpoint = {
'net_dict': net.state_dict(),
'acc': acc,
'epoch': epoch,
}
torch.save(checkpoint,
'./weights/%s/%s_last.pt' % (args.model, args.model))
# rank and mAP
# net.eval()
# TODO BUG
# get_result(net, trainloader, testloader, train_datasets, test_datasets)
return test_loss / len(testloader), 1. - correct / total
# plot figure
x_epoch = []
record = {'train_loss': [], 'train_err': [], 'test_loss': [], 'test_err': []}
fig = plt.figure(figsize=(10,5))
plt.style.use('ggplot')
ax0 = fig.add_subplot(121, title="loss")
ax1 = fig.add_subplot(122, title="top1err")
def draw_curve(epoch, train_loss, train_err, test_loss, test_err):
global record
record['train_loss'].append(train_loss)
record['train_err'].append(train_err)
record['test_loss'].append(test_loss)
record['test_err'].append(test_err)
x_epoch.append(epoch)
ax0.plot(x_epoch, record['train_loss'], 'b.-', label='train')
ax0.plot(x_epoch, record['test_loss'], 'ro-', label='val')
ax1.plot(x_epoch, record['train_err'], 'b.-', label='train')
ax1.plot(x_epoch, record['test_err'], 'ro-', label='val')
if epoch == 0:
ax0.legend()
ax1.legend()
fig.savefig("train_dpj.jpg")
if __name__ == '__main__':
for epoch in range(start_epoch, start_epoch + 200):
train_loss, train_err = train(epoch)
test_loss, test_err = test(epoch)
draw_curve(epoch, train_loss, train_err, test_loss, test_err)
scheduler.step()
# if epoch % 10 == 0:
# os.system("python eval.py")