-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathshaped_swarm_run.py
42 lines (37 loc) · 1.59 KB
/
shaped_swarm_run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from shaped_swarm_env import ShapedSwarmEnv
import numpy as np
from img_sdf import ImageSdf
from barrier_certificate import barrier_certificate
def main():
NUM_ROBOTS = 16
env_config = dict(
n_bots=NUM_ROBOTS,
)
with ShapedSwarmEnv(env_config) as env:
SIM_STEP = 50 * 1e-3
text = 'i'
for char in text:
if char=='*':
imgsdf = ImageSdf(f'art/alphabets/{char}.png', range=(2.0, 2.0))
SIM_TIME_SEC = 20
else:
imgsdf = ImageSdf(f'art/alphabets/{char}.png', range=(2.25, 2.25))
SIM_TIME_SEC = 30
count = 0
robot_positions = []
target_vels = np.zeros((NUM_ROBOTS, 2))
while count <= SIM_TIME_SEC/SIM_STEP:
curr_state = env.step(target_vels)
robot_positions.append(curr_state)
# nearest neighbor calculation
nearest = np.argmin(imgsdf.calculate_distances(curr_state), axis=1)
for i in range(NUM_ROBOTS):
gx, gy = imgsdf.shape_gradient(curr_state[i][0], curr_state[i][1])
gx_push, gy_push = imgsdf.coverage_gradient(curr_state[i], curr_state[nearest[i]])
target_vels[i,0] = gx + 0.5*gx_push
target_vels[i,1] = gy + 0.5*gy_push
target_vels = barrier_certificate(target_vels.T, curr_state[:,:2].T).T
count+=1
robots_traj = np.vstack(robot_positions)
np.save('robots_traj.npy', robots_traj)
main()