-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathbench.py
156 lines (136 loc) · 4.79 KB
/
bench.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import os
import sys
import tensorrt_llm
import torch
from tensorrt_llm.runtime import ModelRunnerCpp
from transformers import AutoTokenizer
sys.path.append("/mnt")
sys.path.append("/mnt/benchmarks/")
from common.base import BaseBenchmarkClass # noqa
from common.utils import launch_cli, make_report # noqa
class TensorRTLLMBenchmark(BaseBenchmarkClass):
def __init__(
self,
model_path: str,
model_name: str,
benchmark_name: str,
precision: str,
device: str,
experiment_name: str,
) -> None:
super().__init__(
model_name=model_name,
model_path=model_path,
benchmark_name=benchmark_name,
experiment_name=experiment_name,
precision=precision,
device=device,
root_folder="/mnt/benchmarks",
)
self.runtime_rank = tensorrt_llm.mpi_rank()
if model_name == "llama":
self.tokenizer_folder = os.path.join(
self.root_folder, "models", "llama-2-7b-chat-hf"
)
else:
self.tokenizer_folder = os.path.join(
self.root_folder, "models", "mistral-7b-v0.1-instruct-hf"
)
def load_model_and_tokenizer(self):
self.tokenizer = AutoTokenizer.from_pretrained(self.tokenizer_folder)
if self.tokenizer.pad_token_id is None:
self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
self.pad_id = self.tokenizer.pad_token_id
self.end_id = self.tokenizer.eos_token_id
# load the runner kawargs
runner_kwargs = dict(
engine_dir=self.model_path,
rank=self.runtime_rank,
max_batch_size=1,
max_input_len=512,
max_output_len=512,
max_beam_width=1,
max_attention_window_size=None,
sink_token_length=None,
)
self.model = ModelRunnerCpp.from_dir(**runner_kwargs)
return self
def preprocess(
self, prompt: str, chat_mode: bool = True, for_benchmarks: bool = True
):
if chat_mode:
template = self.get_chat_template_with_instruction(
prompt=prompt, for_benchmarks=for_benchmarks
)
prompt = self.tokenizer.apply_chat_template(template, tokenize=False)
tokenized_input = self.tokenizer.encode(text=prompt)
tensor = self.tokenizer.encode(
prompt, return_tensors="pt", truncation=True
).squeeze(0)
return {
"prompt": prompt,
"input_tokens": tokenized_input,
"tensor": [tensor],
"num_input_tokens": len(tokenized_input),
}
def run_model(self, inputs: dict, max_tokens: int, temperature: float) -> dict:
tensor = inputs["tensor"]
num_input_tokens = inputs["num_input_tokens"]
with torch.no_grad():
output = self.model.generate(
tensor,
max_new_tokens=max_tokens,
temperature=temperature,
pad_id=self.pad_id,
end_id=self.end_id,
return_dict=True,
)
output_ids = output["output_ids"]
output_tokens = output_ids[0][0].detach().cpu().tolist()[num_input_tokens:]
return {
"output_tokens": output_tokens,
"num_output_tokens": len(output_tokens),
}
def postprocess(self, output: dict) -> str:
output_tokens = output["output_tokens"]
output_text = self.tokenizer.decode(output_tokens, skip_special_tokens=True)
return output_text
def on_exit(self):
del self.model
torch.cuda.synchronize()
if __name__ == "__main__":
parser = launch_cli(description="Nvidia TRT-LLM Benchmark.")
args = parser.parse_args()
model_folder = "/mnt/benchmarks/models"
model_name = (
f"{args.model_name}-2-7b-chat-trt"
if args.model_name == "llama"
else f"{args.model_name}-7b-v0.1-instruct-trt"
)
runner_dict = {
"cuda": [
{
"precision": "float32",
"model_path": os.path.join(model_folder, model_name + "-float32"),
},
{
"precision": "float16",
"model_path": os.path.join(model_folder, model_name + "-float16"),
},
{
"precision": "int8",
"model_path": os.path.join(model_folder, model_name + "-int8"),
},
{
"precision": "int4",
"model_path": os.path.join(model_folder, model_name + "-int4"),
},
]
}
make_report(
args=args,
benchmark_class=TensorRTLLMBenchmark,
runner_dict=runner_dict,
benchmark_name="Nvidia-TRT-LLM",
is_bench_pytorch=False,
)