-
Notifications
You must be signed in to change notification settings - Fork 80
/
evaluate_icl_nuim.py
141 lines (109 loc) · 4.77 KB
/
evaluate_icl_nuim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import glob
import os
from multiprocessing import Process, Queue
from pathlib import Path
import cv2
import evo.main_ape as main_ape
import numpy as np
import torch
from evo.core import sync
from evo.core.metrics import PoseRelation
from evo.core.trajectory import PoseTrajectory3D
from evo.tools import file_interface
from dpvo.config import cfg
from dpvo.dpvo import DPVO
from dpvo.plot_utils import plot_trajectory
from dpvo.stream import image_stream
from dpvo.utils import Timer
SKIP = 0
def show_image(image, t=0):
image = image.permute(1, 2, 0).cpu().numpy()
cv2.imshow('image', image / 255.0)
cv2.waitKey(t)
@torch.no_grad()
def run(cfg, network, imagedir, calib, stride=1, viz=False, show_img=False):
slam = None
queue = Queue(maxsize=8)
reader = Process(target=image_stream, args=(queue, imagedir, calib, stride, 0))
reader.start()
while 1:
(t, image, intrinsics) = queue.get()
if t < 0: break
image = torch.from_numpy(image).permute(2,0,1).cuda()
intrinsics = torch.from_numpy(intrinsics).cuda()
if show_img:
show_image(image, 1)
if slam is None:
slam = DPVO(cfg, network, ht=image.shape[1], wd=image.shape[2], viz=viz)
with Timer("SLAM", enabled=False):
slam(t, image, intrinsics)
reader.join()
return slam.terminate()
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--network', type=str, default='dpvo.pth')
parser.add_argument('--config', default="config/default.yaml")
parser.add_argument('--stride', type=int, default=2)
parser.add_argument('--viz', action="store_true")
parser.add_argument('--show_img', action="store_true")
parser.add_argument('--trials', type=int, default=1)
parser.add_argument('--iclnuim_dir', default="datasets/ICL_NUIM", type=Path)
parser.add_argument('--backend_thresh', type=float, default=64.0)
parser.add_argument('--plot', action="store_true")
parser.add_argument('--opts', nargs='+', default=[])
parser.add_argument('--save_trajectory', action="store_true")
args = parser.parse_args()
cfg.merge_from_file(args.config)
cfg.BACKEND_THRESH = args.backend_thresh
cfg.merge_from_list(args.opts)
print("\nRunning with config...")
print(cfg, "\n")
torch.manual_seed(1234)
scenes = [
"living_room_traj0_loop",
"living_room_traj1_loop",
"living_room_traj2_loop",
"living_room_traj3_loop",
"office_room_traj0_loop",
"office_room_traj1_loop",
"office_room_traj2_loop",
"office_room_traj3_loop",
]
results = {}
for scene in scenes:
imagedir = args.iclnuim_dir / scene
if scene.startswith("living"):
groundtruth = args.iclnuim_dir / f"TrajectoryGT" / f"livingRoom{scene[-6]}.gt.freiburg"
elif scene.startswith("office"):
groundtruth = args.iclnuim_dir / f"TrajectoryGT" / f"traj{scene[-6]}.gt.freiburg"
traj_ref = file_interface.read_tum_trajectory_file(groundtruth)
scene_results = []
for i in range(args.trials):
traj_est, timestamps = run(cfg, args.network, imagedir, "calib/icl_nuim.txt", args.stride, args.viz, args.show_img)
images_list = sorted(glob.glob(os.path.join(imagedir, "*.png")))[::args.stride]
tstamps = np.arange(1, len(images_list)+1, args.stride, dtype=np.float64)
traj_est = PoseTrajectory3D(
positions_xyz=traj_est[:,:3],
orientations_quat_wxyz=traj_est[:, [6, 3, 4, 5]],
timestamps=tstamps)
traj_ref, traj_est = sync.associate_trajectories(traj_ref, traj_est)
result = main_ape.ape(traj_ref, traj_est, est_name='traj',
pose_relation=PoseRelation.translation_part, align=True, correct_scale=True)
ate_score = result.stats["rmse"]
if args.plot:
scene_name = scene.rstrip("_loop").title()
Path("trajectory_plots").mkdir(exist_ok=True)
plot_trajectory(traj_est, traj_ref, f"ICL_NUIM {scene_name} Trial #{i+1} (ATE: {ate_score:.03f})",
f"trajectory_plots/ICL_NUIM_{scene_name}_Trial{i+1:02d}.pdf", align=True, correct_scale=True)
if args.save_trajectory:
Path("saved_trajectories").mkdir(exist_ok=True)
file_interface.write_tum_trajectory_file(f"saved_trajectories/ICL_NUIM_{scene_name}_Trial{i+1:02d}.txt", traj_est)
scene_results.append(ate_score)
results[scene] = np.median(scene_results)
print(scene, sorted(scene_results))
xs = []
for scene in results:
print(scene, results[scene])
xs.append(results[scene])
print("AVG: ", np.mean(xs))