-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathbuild_cache.py
105 lines (82 loc) · 4.14 KB
/
build_cache.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
''' This Script builds a cache of validation and training features in a .h5 file
input -> location of features.h5 and validation_features.h5
output -> A HDF5 file containing combined version of features+validation_features and their forward
pass through rnn model (50-dim)
'''
import h5py
import numpy as np
from tqdm import *
from rnn_model import hinge_rank_loss
import argparse
parser = argparse.ArgumentParser(description='server')
parser.add_argument("-cache", type=str, help="location of the cache.h5 file", required=True)
parser.add_argument("-model", type=str, help="location of the model.hdf5 snapshot", required=True)
parser.add_argument("-use_train_images", type=int, help="use training images for image retrieval", required=True)
parser.add_argument("-use_valid_images", type=int, help="use validation images for image retrieval", required=True)
args = parser.parse_args()
IMAGE_DIM = 4096
WORD_DIM = 300
model_location = args.model
MAX_SEQUENCE_LENGTH = 20
def dump_to_h5(names, scores ,hf):
''' Dump the list of names and the numpy array of scores
to given h5 file '''
assert int(len(scores)) == len(names), "Number of output scores == number of file names to dump"
x_h5 = hf["data/features"]
fnames_h5 = hf["data/fnames"]
cur_rows = int(x_h5.shape[0])
new_rows = cur_rows + len(names)
x_h5.resize((new_rows,IMAGE_DIM))
fnames_h5.resize((new_rows,1))
for i in range(len(names)):
x_h5[cur_rows+i] = scores[i]
fnames_h5[cur_rows+i] = names[i]
def main():
validation_features_loc = "processed_features/validation_features.h5"
training_features_loc = "processed_features/features.h5"
train_features_h5 = h5py.File(training_features_loc, "r")
valid_features_h5 = h5py.File(validation_features_loc, "r")
cache_h5 = h5py.File(args.cache,"w")
cache_h5.create_group("data")
data_h5 = cache_h5["data"].create_dataset("features", (0, IMAGE_DIM), maxshape=(None,IMAGE_DIM))
dt = h5py.special_dtype(vlen=str)
fnames_h5= cache_h5["data"].create_dataset("fnames", (0, 1), dtype=dt, maxshape=(None,1))
# copy image feats+fnames from features.h5 to cache/data/features
if args.use_train_images:
print "Copying features from features.h5 to cache.h5"
batch_size = 500
for lix in tqdm(xrange(0, len(train_features_h5["data/features"]), batch_size)):
uix = min(len(train_features_h5["data/features"]), lix + batch_size)
names = train_features_h5["data/fnames"][lix:uix]
names = [n[0] for n in names]
dump_to_h5( names, train_features_h5["data/features"][lix:uix], cache_h5 )
# copy image feats+fnames from validation_features.h5 to cache/data/features
if args.use_valid_images:
print "Copying validation features from features.h5 to cache.h5"
batch_size = 500
for lix in tqdm(xrange(0, len(valid_features_h5["data/features"]), batch_size)):
uix = min(len(valid_features_h5["data/features"]), lix + batch_size)
names = valid_features_h5["data/fnames"][lix:uix]
names = [n[0] for n in names]
dump_to_h5( names, valid_features_h5["data/features"][lix:uix], cache_h5 )
# Load model
from keras.models import load_model
print "..Loading model"
model = load_model(model_location, custom_objects={"hinge_rank_loss":hinge_rank_loss})
# Run image feats through model to get 300-dim embedding
all_features = cache_h5["data/features"]
im_outs = cache_h5["data"].create_dataset("im_outs", (len(all_features), WORD_DIM))
print "Running model on all features of size", all_features.shape
batch_size = 500
for lix in tqdm(xrange(0, len(all_features), batch_size)):
uix = min(len(all_features), lix + batch_size)
output = model.predict([ all_features[lix:uix, :], np.zeros((uix-lix, MAX_SEQUENCE_LENGTH))])[:, :WORD_DIM]
output = output / np.linalg.norm(output, axis=1, keepdims=True)
# add ^ output to im_outs
im_outs[lix:uix] = output
# CLOSE ALL H5
train_features_h5.close()
valid_features_h5.close()
cache_h5.close()
if __name__ == '__main__':
main()