-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathflowchart_figures.m
225 lines (188 loc) · 7.51 KB
/
flowchart_figures.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
% Generate panels for figures 3 and 4.
sr_dirs = prepSR;
sample_day = '2020-10-26';
sample_time = '13-31-00';
sample_region = 'M1';
switch sample_region
case {'M1', 'V1L'}
sample_probe = 'Probe1';
chan_offset = 0;
case {'V1', 'V1R'}
sample_probe = 'Probe2';
chan_offset = 64;
end
sample_channames = {'Inf3', 'Inf4'};
sample_fullchannames = strcat(sample_region, '_', sample_channames);
sample_timerange = [11400, 11700];
figpos = [0, 0, 784, 238];
mt_res_first = matfile(fullfile(sr_dirs.results, sample_day, '11-30-00', 'mt_res_layers.mat'));
mt_options = mt_res_first.options;
winlen = mt_options.window;
time_offset = mt_res_first.time_grid(1, end) + winlen / 2;
mt_res = matfile(fullfile(sr_dirs.results, sample_day, sample_time, 'mt_res_layers.mat'));
timerange_offset = sample_timerange - time_offset;
time_mask = mt_res.time_grid >= timerange_offset(1) & mt_res.time_grid <= timerange_offset(2);
xaxis = linspace(0, sample_timerange(2) - sample_timerange(1), sum(time_mask));
% Channels
mfile_csd = matfile(fullfile(sr_dirs.results, sample_day, sprintf('csd_%s.mat', sample_region)));
probe_chan_ind = find(strcmp(mfile_csd.chan_names, sample_channames{1}));
abs_chan_ind = mfile_csd.chans(1, probe_chan_ind) + chan_offset;
chan_struct = struct(sample_probe, abs_chan_ind);
%% Raw LFP
% Load raw data
data_mfile = matfile(fullfile(sr_dirs.processed_lfp, sprintf('meanSub_%s_%s.mat', sample_day, sample_time)));
srate = data_mfile.finalSampR;
data_range = timerange_offset(1)*srate:timerange_offset(2)*srate;
lfp_segment = organize_lfp(data_mfile, chan_struct, [], [], [], data_range);
xaxis_lfp = linspace(0, sample_timerange(2) - sample_timerange(1), length(lfp_segment));
h_lfp = figure('Position', figpos);
h_lfp.Renderer = 'painters';
plot(xaxis_lfp, 1000 * lfp_segment, 'k', 'LineWidth', 1);
title('Raw LFP');
xlabel('Time (s)');
ylabel('Potential (uV)');
set(gca, 'FontSize', 16, 'FontName', 'Arial', 'XGrid', 'on', 'Box', 'off');
%% Raw LFP callouts (pre- and post-transition)
mid_sample = 1 + (data_range(end)-data_range(1)) / 2;
callout_offset = srate * 10; % start 10 seconds before and after transition
callout_length = srate * 6; % 6 seconds (1 window)
pre_samps = mid_sample - (callout_offset + (callout_length:-1:1));
post_samps = mid_sample + callout_offset + (1:callout_length);
% plot patches in LFP figure corresponding to callouts
figure(h_lfp);
lfp_ylim = get(gca, 'YLim');
hold on;
x_pre = xaxis_lfp(pre_samps([1, end, end, 1]));
patch(x_pre, repelem(lfp_ylim, 2), repelem(-1, 4), 'r', 'FaceAlpha', 0.3, 'LineStyle', 'none');
x_post = xaxis_lfp(post_samps([1, end, end, 1]));
patch(x_post, repelem(lfp_ylim, 2), repelem(-1, 4), 'b', 'FaceAlpha', 0.3, 'LineStyle', 'none');
callout_pos = [0, 0, 295, 84];
h_pre = figure('Position', callout_pos);
plot(lfp_segment(pre_samps), 'k', 'LineWidth', 1);
xticks([]);
yticks([]);
set(gca, 'XColor', 'r');
set(gca, 'YColor', 'r');
h_post = figure('Position', callout_pos);
plot(lfp_segment(post_samps), 'k', 'LineWidth', 1);
xticks([]);
yticks([]);
set(gca, 'XColor', 'b');
set(gca, 'YColor', 'b');
%% Raw spectrogram (unused)
h_raw = figure('Position', figpos);
plot_multitaper(mt_res, struct(...
'pxx_name', 'pxx', ...
'take_log', true, ...
'xlim', timerange_offset, ...
'chan_names', {sample_fullchannames(1)}, ...
'axes', gca));
set(gca, 'FontSize', 16, 'FontName', 'Arial', 'Position', [0.1,0.05,0.75,0.795]);
title('Raw spectrogram');
cb = colorbar;
cb.Label.String = 'Power (mV^2/Hz, dB)';
cb.Position = [0.86, 0.05, 0.03, 0.795];
%% Normalized spectrogram
h_normalized = figure('Position', figpos);
plot_multitaper(mt_res, struct(...
'pxx_name', 'pxx_rankord', ...
'xlim', timerange_offset, ...
'clim', [0, 1], ...
'chan_names', {sample_fullchannames(1)}, ...
'axes', gca));
set(gca, 'FontSize', 16, 'FontName', 'Arial', 'Position', [0.1,0.05,0.75,0.795]);
title('Normalized spectrogram');
cb = colorbar;
cb.Label.String = 'Power rank';
cb.Position = [0.86, 0.05, 0.03, 0.795];
%% NMF loadings and scores
nmf_mfile = matfile(fullfile(sr_dirs.results, sample_day, 'nmf_res.mat'));
sample_chaninds = cellfun(@(cn) find(strcmp(cn, nmf_mfile.chan_names)), sample_fullchannames);
loadings = nmf_mfile.nmf_U;
loadings = loadings{1}{sample_chaninds(1)};
h_loadings = figure('Position', [0, 0, 218, 238]);
sanePColor(1:size(loadings, 2), nmf_mfile.freq_axis, loadings, false, true);
set(gca, 'YScale', 'log', 'FontSize', 16, 'FontName', 'Arial');
xticks(1:size(loadings, 2));
xlabel('Component #');
ylabel('Frequency (Hz)');
title('NMF loadings');
yticks([1, 10, 100]);
box off;
% Loadings for both channels (Figure 4A and first channel is Figure 3D)
all_hr_chan_names = util.make_hr_chan_names(nmf_mfile.chan_names, mt_res.chan_locs);
depths = all_hr_chan_names(sample_chaninds);
scores = nmf_mfile.nmf_V;
scores = scores{1}(sample_chaninds);
n_chans = length(sample_chaninds);
h_scores = gobjects(n_chans, 1);
b_time = nmf_mfile.time_axis >= sample_timerange(1) & nmf_mfile.time_axis <= sample_timerange(2);
score_submats = cellfun(@(sc) sc(b_time, :).', scores, 'uni', false);
for kC = 1:n_chans
h_scores(kC) = figure('Position', figpos);
n_comps = size(score_submats{kC}, 1);
sanePColor(xaxis, 1:n_comps, score_submats{kC});
title(sprintf('%s, depth = %s um', sample_region, depths(kC)));
set(gca, 'FontSize', 16, 'FontName', 'Arial', 'Position', [0.1,0.05,0.75,0.795]);
yticks(1:n_comps);
ylabel('Component #');
xlabel('Time (s)');
cb = colorbar;
cb.Label.String = 'Component score';
cb.Position = [0.86, 0.05, 0.03, 0.795];
box off;
end
%% Reconstruction
recon = loadings * score_submats{1};
h_recon = figure('Position', figpos);
sanePColor(xaxis, nmf_mfile.freq_axis, recon, false, true);
set(gca, 'YScale', 'log', 'FontSize', 16, 'FontName', 'Arial', 'Position', [0.1, 0.05, 0.75, 0.795]);
title('NMF reconstruction');
yticks([1, 10, 100]);
ylabel('Frequency (Hz)');
xlabel('Time (s)');
cb = colorbar;
cb.Label.String = 'Power rank';
cb.Position = [0.86, 0.05, 0.03, 0.795];
box off;
%% Discrete state plot
classes = nmf_mfile.filtered_classes;
classes = classes{1};
classes = cellfun(@(cls) cls(b_time), classes, 'uni', false);
h_state = figure('Position', figpos);
class_plot(xaxis, classes);
legend('off');
set(gca, 'FontSize', 16, 'FontName', 'Arial', 'Position', [0.1, 0.05, 0.75, 0.795]);
title('Discrete states');
ylabel('Channel');
%% Discrete state transitions
% open the figure saved during full_analysis_byday since the transition table isn't saved anywhere
h_trans = openfig(fullfile(sr_dirs.results, sample_day, ['transitions_w_sync_', sample_day, '.fig']));
h_trans.Position = figpos;
ax = gca;
set(ax, 'FontSize', 16, 'FontName', 'Arial', 'Position', [0.1, 0.05, 0.75, 0.795]);
cb = h_trans.Children(1);
cb.Position = [0.86, 0.05, 0.03, 0.795];
% Make figure bigger without changing the size of its contents (to fit x axis)
ax.Units = 'pixels';
cb.Units = 'pixels';
shift_px = 50;
h_trans.Position(4) = h_trans.Position(4) + shift_px;
ax.Position(2) = ax.Position(2) + shift_px;
cb.Position(2) = cb.Position(2) + shift_px;
ax.Units = 'relative';
cb.Units = 'relative';
% Zoom in on the relevant segment
xlim(sample_timerange);
xticks(linspace(sample_timerange(1), sample_timerange(2), 7));
xticklabels(linspace(0, sample_timerange(2) - sample_timerange(1), 7));
% Y axis
n_chans = length(classes);
ylim([0, n_chans + 1]);
yticks(1:n_chans);
yticklabels([]);
grid on;
% make lines thicker
set(ax.Children, 'Linewidth', 1.5);
title('Discrete state transitions');
ylabel('Channel');