-
Notifications
You must be signed in to change notification settings - Fork 272
/
axi_burst_unwrap.sv
656 lines (618 loc) · 23.2 KB
/
axi_burst_unwrap.sv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
// Copyright (c) 2023 ETH Zurich, University of Bologna
//
// Copyright and related rights are licensed under the Solderpad Hardware
// License, Version 0.51 (the "License"); you may not use this file except in
// compliance with the License. You may obtain a copy of the License at
// http://solderpad.org/licenses/SHL-0.51. Unless required by applicable law
// or agreed to in writing, software, hardware and materials distributed under
// this License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
//
// Authors:
// - Wolfgang Roenninger <wroennin@iis.ee.ethz.ch>
// - Andreas Kurth <akurth@iis.ee.ethz.ch>
// - Nils Wistoff <nwistoff@iis.ee.ethz.ch>
`include "axi/typedef.svh"
`include "common_cells/registers.svh"
/// Splits wrapping AXI4 bursts into incremental bursts.
///
/// ## Limitations
///
/// - This module does not support atomic operations (ATOPs) and responds to ATOPs with a slave
/// error. Place an [`axi_atop_filter`](module.axi_atop_filter) before this module if upstream
/// modules can generate ATOPs.
module axi_burst_unwrap #(
// Maximum number of AXI read bursts outstanding at the same time
parameter int unsigned MaxReadTxns = 32'd0,
// Maximum number of AXI write bursts outstanding at the same time
parameter int unsigned MaxWriteTxns = 32'd0,
// AXI Bus Types
parameter int unsigned AddrWidth = 32'd0,
parameter int unsigned DataWidth = 32'd0,
parameter int unsigned IdWidth = 32'd0,
parameter int unsigned UserWidth = 32'd0,
parameter type axi_req_t = logic,
parameter type axi_resp_t = logic
) (
input logic clk_i,
input logic rst_ni,
// Input / Slave Port
input axi_req_t slv_req_i,
output axi_resp_t slv_resp_o,
// Output / Master Port
output axi_req_t mst_req_o,
input axi_resp_t mst_resp_i
);
typedef logic [AddrWidth-1:0] addr_t;
typedef logic [DataWidth-1:0] data_t;
typedef logic [IdWidth-1:0] id_t;
typedef logic [DataWidth/8-1:0] strb_t;
typedef logic [UserWidth-1:0] user_t;
`AXI_TYPEDEF_AW_CHAN_T(aw_chan_t, addr_t, id_t, user_t)
`AXI_TYPEDEF_W_CHAN_T(w_chan_t, data_t, strb_t, user_t)
`AXI_TYPEDEF_B_CHAN_T(b_chan_t, id_t, user_t)
`AXI_TYPEDEF_AR_CHAN_T(ar_chan_t, addr_t, id_t, user_t)
`AXI_TYPEDEF_R_CHAN_T(r_chan_t, data_t, id_t, user_t)
// Demultiplex between supported and unsupported transactions.
axi_req_t act_req, unsupported_req;
axi_resp_t act_resp, unsupported_resp;
logic sel_aw_unsupported, sel_ar_unsupported;
localparam int unsigned MaxTxns = (MaxReadTxns > MaxWriteTxns) ? MaxReadTxns : MaxWriteTxns;
axi_demux #(
.AxiIdWidth ( IdWidth ),
.aw_chan_t ( aw_chan_t ),
.w_chan_t ( w_chan_t ),
.b_chan_t ( b_chan_t ),
.ar_chan_t ( ar_chan_t ),
.r_chan_t ( r_chan_t ),
.axi_req_t ( axi_req_t ),
.axi_resp_t ( axi_resp_t ),
.NoMstPorts ( 2 ),
.MaxTrans ( MaxTxns ),
.AxiLookBits ( IdWidth ),
.SpillAw ( 1'b0 ),
.SpillW ( 1'b0 ),
.SpillB ( 1'b0 ),
.SpillAr ( 1'b0 ),
.SpillR ( 1'b0 )
) i_demux_supported_vs_unsupported (
.clk_i,
.rst_ni,
.test_i ( 1'b0 ),
.slv_req_i,
.slv_aw_select_i ( sel_aw_unsupported ),
.slv_ar_select_i ( sel_ar_unsupported ),
.slv_resp_o,
.mst_reqs_o ( {unsupported_req, act_req} ),
.mst_resps_i ( {unsupported_resp, act_resp} )
);
// Define supported transactions.
function bit txn_supported(axi_pkg::atop_t atop, axi_pkg::burst_t burst, axi_pkg::cache_t cache,
axi_pkg::len_t len);
// Single-beat transactions do not need splitting, so all are supported.
if (len == '0) return 1'b1;
// ATOPs are not supported.
if (atop != '0) return 1'b0;
// The AXI Spec (A3.4.1) only allows splitting non-modifiable transactions ..
if (!axi_pkg::modifiable(cache)) begin
// .. if they are INCR bursts and longer than 16 beats.
return (burst == axi_pkg::BURST_INCR) & (len > 16);
end
// All other transactions are supported.
return 1'b1;
endfunction
assign sel_aw_unsupported = ~txn_supported(slv_req_i.aw.atop, slv_req_i.aw.burst,
slv_req_i.aw.cache, slv_req_i.aw.len);
assign sel_ar_unsupported = ~txn_supported('0, slv_req_i.ar.burst,
slv_req_i.ar.cache, slv_req_i.ar.len);
// Respond to unsupported transactions with slave errors.
axi_err_slv #(
.AxiIdWidth ( IdWidth ),
.axi_req_t ( axi_req_t ),
.axi_resp_t ( axi_resp_t ),
.Resp ( axi_pkg::RESP_SLVERR ),
.ATOPs ( 1'b0 ), // The burst splitter does not support ATOPs.
.MaxTrans ( 1 ) // Splitting bursts implies a low-performance bus.
) i_err_slv (
.clk_i,
.rst_ni,
.test_i ( 1'b0 ),
.slv_req_i ( unsupported_req ),
.slv_resp_o ( unsupported_resp )
);
// --------------------------------------------------
// AW Channel
// --------------------------------------------------
logic b_cnt_dec, b_cnt_req, b_cnt_gnt, b_cnt_err;
logic w_cnt_dec, w_cnt_req, w_cnt_gnt;
axi_pkg::len_t b_cnt_len, w_cnt_len;
axi_burst_unwrap_ax_chan #(
.AwChan ( 1'b1 ),
.chan_t ( aw_chan_t ),
.AddrWidth ( AddrWidth ),
.IdWidth ( IdWidth ),
.MaxTxns ( MaxWriteTxns )
) i_axi_burst_unwrap_aw_chan (
.clk_i,
.rst_ni,
.ax_i ( act_req.aw ),
.ax_valid_i ( act_req.aw_valid ),
.ax_ready_o ( act_resp.aw_ready ),
.ax_o ( mst_req_o.aw ),
.ax_valid_o ( mst_req_o.aw_valid ),
.ax_ready_i ( mst_resp_i.aw_ready ),
.cnt_id_i ( mst_resp_i.b.id ),
.cnt_len_o ({ w_cnt_len , b_cnt_len }),
.cnt_set_err_i ( mst_resp_i.b.resp[1] ),
.cnt_err_o ( b_cnt_err ),
.cnt_dec_i ({ w_cnt_dec , b_cnt_dec }),
.cnt_req_i ({ w_cnt_req , b_cnt_req }),
.cnt_gnt_o ({ w_cnt_gnt , b_cnt_gnt })
);
// --------------------------------------------------
// W Channel
// --------------------------------------------------
// Set `last` flag in last beat of downstream burst
logic w_last_d, w_last_q;
enum logic [1:0] {WReady, WWait, WFeedthrough} w_state_d, w_state_q;
always_comb begin
w_cnt_dec = 1'b0;
w_cnt_req = 1'b0;
w_last_d = w_last_q;
w_state_d = w_state_q;
mst_req_o.w_valid = 1'b0;
mst_req_o.w = act_req.w;
act_resp.w_ready = 1'b0;
unique case (w_state_q)
WReady: begin
if (act_req.w_valid) begin
w_cnt_req = 1'b1;
if (w_cnt_gnt) begin
w_last_d = act_req.w.last | (w_cnt_len == 8'd0);
mst_req_o.w.last = w_last_d;
w_cnt_dec = 1'b1;
// Try to forward the beat downstream.
mst_req_o.w_valid = 1'b1;
if (mst_resp_i.w_ready) begin
act_resp.w_ready = 1'b1;
if (w_last_d && !act_req.w.last) begin
w_state_d = WFeedthrough;
end
end else begin
w_state_d = WWait;
end
end // if (w_cnt_gnt)
end // if (act_req.w_valid)
end // case: WReady
WWait: begin
mst_req_o.w.last = w_last_q;
mst_req_o.w_valid = 1'b1;
if (mst_resp_i.w_ready) begin
act_resp.w_ready = 1'b1;
w_state_d = (!w_last_q || act_req.w.last) ? WReady : WFeedthrough;
end
end
WFeedthrough: begin
// Feed through second incremental burst.
mst_req_o.w_valid = act_req.w_valid;
act_resp.w_ready = mst_resp_i.w_ready;
if (act_req.w_valid && mst_resp_i.w_ready && act_req.w.last) begin
w_state_d = WReady;
end
end
default: /*do nothing*/;
endcase // unique case (w_state_q)
end
// --------------------------------------------------
// B Channel
// --------------------------------------------------
// Filter B response, except for the last one
enum logic {BReady, BWait} b_state_d, b_state_q;
logic b_err_d, b_err_q;
always_comb begin
mst_req_o.b_ready = 1'b0;
act_resp.b = '0;
act_resp.b_valid = 1'b0;
b_cnt_dec = 1'b0;
b_cnt_req = 1'b0;
b_err_d = b_err_q;
b_state_d = b_state_q;
unique case (b_state_q)
BReady: begin
if (mst_resp_i.b_valid) begin
b_cnt_req = 1'b1;
if (b_cnt_gnt) begin
if (b_cnt_len == 8'd0) begin
act_resp.b = mst_resp_i.b;
if (b_cnt_err) begin
act_resp.b.resp = axi_pkg::RESP_SLVERR;
end
act_resp.b_valid = 1'b1;
b_cnt_dec = 1'b1;
if (act_req.b_ready) begin
mst_req_o.b_ready = 1'b1;
end else begin
b_state_d = BWait;
b_err_d = b_cnt_err;
end
end else begin
mst_req_o.b_ready = 1'b1;
b_cnt_dec = 1'b1;
end
end
end
end
BWait: begin
act_resp.b = mst_resp_i.b;
if (b_err_q) begin
act_resp.b.resp = axi_pkg::RESP_SLVERR;
end
act_resp.b_valid = 1'b1;
if (mst_resp_i.b_valid && act_req.b_ready) begin
mst_req_o.b_ready = 1'b1;
b_state_d = BReady;
end
end
default: /*do nothing*/;
endcase
end
// --------------------------------------------------
// AR Channel
// --------------------------------------------------
// See description of `ax_chan` module.
logic r_cnt_dec, r_cnt_req, r_cnt_gnt, unc0;
axi_pkg::len_t r_cnt_len, unc1;
axi_burst_unwrap_ax_chan #(
.AwChan ( 0 ),
.chan_t ( ar_chan_t ),
.AddrWidth ( AddrWidth ),
.IdWidth ( IdWidth ),
.MaxTxns ( MaxReadTxns )
) i_axi_burst_unwrap_ar_chan (
.clk_i,
.rst_ni,
.ax_i ( act_req.ar ),
.ax_valid_i ( act_req.ar_valid ),
.ax_ready_o ( act_resp.ar_ready ),
.ax_o ( mst_req_o.ar ),
.ax_valid_o ( mst_req_o.ar_valid ),
.ax_ready_i ( mst_resp_i.ar_ready ),
.cnt_id_i ( mst_resp_i.r.id ),
.cnt_len_o ({ unc1 , r_cnt_len }),
.cnt_set_err_i ( 1'b0 ),
.cnt_err_o ( ),
.cnt_dec_i ({ 1'b0 , r_cnt_dec }),
.cnt_req_i ({ 1'b0 , r_cnt_req }),
.cnt_gnt_o ({ unc0 , r_cnt_gnt })
);
// --------------------------------------------------
// R Channel
// --------------------------------------------------
// Reconstruct `last`, feed rest through.
logic r_last_d, r_last_q;
enum logic {RFeedthrough, RWait} r_state_d, r_state_q;
always_comb begin
r_cnt_dec = 1'b0;
r_cnt_req = 1'b0;
r_last_d = r_last_q;
r_state_d = r_state_q;
mst_req_o.r_ready = 1'b0;
act_resp.r = mst_resp_i.r;
act_resp.r.last = 1'b0;
act_resp.r_valid = 1'b0;
unique case (r_state_q)
RFeedthrough: begin
// If downstream has an R beat and the R counters can give us the remaining length of
// that burst, ...
if (mst_resp_i.r_valid) begin
r_cnt_req = 1'b1;
if (r_cnt_gnt) begin
r_last_d = (r_cnt_len == 8'd0);
act_resp.r.last = r_last_d;
// Decrement the counter.
r_cnt_dec = 1'b1;
// Try to forward the beat upstream.
act_resp.r_valid = 1'b1;
if (act_req.r_ready) begin
// Acknowledge downstream.
mst_req_o.r_ready = 1'b1;
end else begin
// Wait for upstream to become ready.
r_state_d = RWait;
end
end
end
end
RWait: begin
act_resp.r.last = r_last_q;
act_resp.r_valid = mst_resp_i.r_valid;
if (mst_resp_i.r_valid && act_req.r_ready) begin
mst_req_o.r_ready = 1'b1;
r_state_d = RFeedthrough;
end
end
default: /*do nothing*/;
endcase
end
// --------------------------------------------------
// Flip-Flops
// --------------------------------------------------
`FFARN(b_err_q, b_err_d, 1'b0, clk_i, rst_ni)
`FFARN(b_state_q, b_state_d, BReady, clk_i, rst_ni)
`FFARN(r_last_q, r_last_d, 1'b0, clk_i, rst_ni)
`FFARN(r_state_q, r_state_d, RFeedthrough, clk_i, rst_ni)
`FFARN(w_last_q, w_last_d, 1'b0, clk_i, rst_ni)
`FFARN(w_state_q, w_state_d, WReady, clk_i, rst_ni)
// --------------------------------------------------
// Assumptions and assertions
// --------------------------------------------------
`ifndef VERILATOR
// pragma translate_off
default disable iff (!rst_ni);
// Inputs
assume property (@(posedge clk_i) slv_req_i.aw_valid |->
txn_supported(slv_req_i.aw.atop, slv_req_i.aw.burst, slv_req_i.aw.cache, slv_req_i.aw.len)
) else $warning("Unsupported AW transaction received, returning slave error!");
assume property (@(posedge clk_i) slv_req_i.ar_valid |->
txn_supported('0, slv_req_i.ar.burst, slv_req_i.ar.cache, slv_req_i.ar.len)
) else $warning("Unsupported AR transaction received, returning slave error!");
assume property (@(posedge clk_i) slv_req_i.aw_valid |->
slv_req_i.aw.atop == '0 || slv_req_i.aw.atop[5:4] == axi_pkg::ATOP_ATOMICSTORE
) else $fatal(1, "Unsupported ATOP that gives rise to a R response received,\
cannot respond in protocol-compliant manner!");
// pragma translate_on
`endif
endmodule
/// Internal module of [`axi_burst_splitter`](module.axi_burst_splitter) to control Ax channels.
///
/// Store burst lengths in counters, which are associated to AXI IDs through ID queues (to allow
/// reordering of responses w.r.t. requests).
module axi_burst_unwrap_ax_chan #(
parameter bit AwChan = 0,
parameter type chan_t = logic,
parameter int unsigned AddrWidth = 0,
parameter int unsigned IdWidth = 0,
parameter int unsigned MaxTxns = 0,
parameter type id_t = logic[IdWidth-1:0]
) (
input logic clk_i,
input logic rst_ni,
input chan_t ax_i,
input logic ax_valid_i,
output logic ax_ready_o,
output chan_t ax_o,
output logic ax_valid_o,
input logic ax_ready_i,
input id_t cnt_id_i,
output axi_pkg::len_t [1:0] cnt_len_o,
input logic cnt_set_err_i,
output logic cnt_err_o,
input logic [1:0] cnt_dec_i,
input logic [1:0] cnt_req_i,
output logic [1:0] cnt_gnt_o
);
typedef logic[IdWidth-1:0] cnt_id_t;
logic [1:0] cnt_alloc_req, cnt_alloc_gnt;
axi_pkg::len_t split_len, alloc_len_0;
// Count down from upstream burst len to generate upstream last flag.
axi_burst_counters #(
.MaxTxns ( MaxTxns ),
.IdWidth ( IdWidth )
) i_axi_burst_counters0 (
.clk_i,
.rst_ni,
.alloc_id_i ( ax_i.id ),
.alloc_len_i ( alloc_len_0 ),
.alloc_req_i ( cnt_alloc_req[0] ),
.alloc_gnt_o ( cnt_alloc_gnt[0] ),
.cnt_id_i ( cnt_id_i ),
.cnt_len_o ( cnt_len_o[0] ),
.cnt_set_err_i ( cnt_set_err_i ),
.cnt_err_o ( cnt_err_o ),
.cnt_dec_i ( cnt_dec_i[0] ),
.cnt_req_i ( cnt_req_i[0] ),
.cnt_gnt_o ( cnt_gnt_o[0] )
);
// For AR we need to count the r responses, for AW we need to count downstream b responses
assign alloc_len_0 = AwChan ? split_len : ax_i.len;
// For AwChan, count down W beats until end of first incr burst to set last flag.
// Since the W channel is ordered and has no IDs, just use the same ID for all transactions to
// implement a FIFO. TODO: replace internal ID queue with FIFO
axi_burst_counters #(
.MaxTxns ( MaxTxns ),
.IdWidth ( 1 )
) i_axi_burst_counters1 (
.clk_i,
.rst_ni,
.alloc_id_i ( 1'b0 ),
.alloc_len_i ( ax_o.len ),
.alloc_req_i ( cnt_alloc_req[1] ),
.alloc_gnt_o ( cnt_alloc_gnt[1] ),
.cnt_id_i ( 1'b0 ),
.cnt_len_o ( cnt_len_o[1] ),
.cnt_set_err_i ( 1'b0 ),
.cnt_err_o ( ),
.cnt_dec_i ( cnt_dec_i[1] ),
.cnt_req_i ( cnt_req_i[1] ),
.cnt_gnt_o ( cnt_gnt_o[1] )
);
chan_t ax_d, ax_q;
logic [10:0] container_size;
logic [AddrWidth-1:0] wrap_boundary;
// The total size of this burst (beat_size * burst_length)
assign container_size = ax_i.len << ax_i.size;
// For wrapping bursts, this returns the wrap boundary (container size is power of two according to A.3.4.1)
assign wrap_boundary = ax_i.addr & ~(AddrWidth'(container_size) - 1);
enum logic {Idle, Busy} state_d, state_q;
always_comb begin
cnt_alloc_req = 1'b0;
ax_d = ax_q;
state_d = state_q;
ax_o = '0;
ax_valid_o = 1'b0;
ax_ready_o = 1'b0;
split_len = 8'd0;
unique case (state_q)
Idle: begin
if (ax_valid_i && &cnt_alloc_gnt) begin
if (ax_i.burst == axi_pkg::BURST_WRAP && ax_i.addr != wrap_boundary) begin // Splitting required.
// Store Ax, allocate a counter, and acknowledge upstream.
ax_d = ax_i;
ax_d.burst = axi_pkg::BURST_INCR;
split_len = 8'd1;
// Allocate second counter only for AwChan
cnt_alloc_req = { AwChan, 1'b1 };
// Try to feed first burst through.
ax_o = ax_d;
// First (this) incr burst from addr to wrap boundary + container size
ax_o.len = (wrap_boundary + container_size - ax_i.addr) >> ax_i.size;
// Next incr burst from wrap boundary to addr
ax_d.len = (ax_i.addr - wrap_boundary) >> ax_i.size;
ax_valid_o = 1'b1;
if (ax_ready_i) begin
ax_ready_o = 1'b1;
state_d = Busy;
end
end else begin // No splitting required -> feed through.
ax_o = ax_i;
// A wrapping burst starting on the wrap boundary maps directly to an incrementing burst.
if (ax_i.burst == axi_pkg::BURST_WRAP) begin
ax_o.burst = axi_pkg::BURST_INCR;
end
ax_valid_o = 1'b1;
// As soon as downstream is ready, allocate a counter and acknowledge upstream.
if (ax_ready_i) begin
cnt_alloc_req = { AwChan, 1'b1 };
ax_ready_o = 1'b1;
end
end
end
end
Busy: begin
// Sent next burst from split.
ax_o = ax_q;
ax_valid_o = 1'b1;
if (ax_ready_i) begin
state_d = Idle;
end
end
default: /*do nothing*/;
endcase
end
// registers
`FFARN(ax_q, ax_d, '0, clk_i, rst_ni)
`FFARN(state_q, state_d, Idle, clk_i, rst_ni)
endmodule
/// Internal module of [`axi_burst_splitter`](module.axi_burst_splitter) to order transactions.
module axi_burst_counters #(
parameter int unsigned MaxTxns = 0,
parameter int unsigned IdWidth = 0,
parameter type id_t = logic [IdWidth-1:0]
) (
input logic clk_i,
input logic rst_ni,
input id_t alloc_id_i,
input axi_pkg::len_t alloc_len_i,
input logic alloc_req_i,
output logic alloc_gnt_o,
input id_t cnt_id_i,
output axi_pkg::len_t cnt_len_o,
input logic cnt_set_err_i,
output logic cnt_err_o,
input logic cnt_dec_i,
input logic cnt_req_i,
output logic cnt_gnt_o
);
localparam int unsigned CntIdxWidth = (MaxTxns > 1) ? $clog2(MaxTxns) : 32'd1;
typedef logic [CntIdxWidth-1:0] cnt_idx_t;
typedef logic [$bits(axi_pkg::len_t):0] cnt_t;
logic [MaxTxns-1:0] cnt_dec, cnt_free, cnt_set, err_d, err_q;
cnt_t cnt_inp;
cnt_t [MaxTxns-1:0] cnt_oup;
cnt_idx_t cnt_free_idx, cnt_r_idx;
for (genvar i = 0; i < MaxTxns; i++) begin : gen_cnt
counter #(
.WIDTH ( $bits(cnt_t) )
) i_cnt (
.clk_i,
.rst_ni,
.clear_i ( 1'b0 ),
.en_i ( cnt_dec[i] ),
.load_i ( cnt_set[i] ),
.down_i ( 1'b1 ),
.d_i ( cnt_inp ),
.q_o ( cnt_oup[i] ),
.overflow_o ( ) // not used
);
assign cnt_free[i] = (cnt_oup[i] == '0);
end
assign cnt_inp = {1'b0, alloc_len_i} + 1;
lzc #(
.WIDTH ( MaxTxns ),
.MODE ( 1'b0 ) // start counting at index 0
) i_lzc (
.in_i ( cnt_free ),
.cnt_o ( cnt_free_idx ),
.empty_o ( )
);
logic idq_inp_req, idq_inp_gnt,
idq_oup_gnt, idq_oup_valid, idq_oup_pop;
id_queue #(
.ID_WIDTH ( $bits(id_t) ),
.CAPACITY ( MaxTxns ),
.data_t ( cnt_idx_t )
) i_idq (
.clk_i,
.rst_ni,
.inp_id_i ( alloc_id_i ),
.inp_data_i ( cnt_free_idx ),
.inp_req_i ( idq_inp_req ),
.inp_gnt_o ( idq_inp_gnt ),
.exists_data_i ( '0 ),
.exists_mask_i ( '0 ),
.exists_req_i ( 1'b0 ),
.exists_o (/* keep open */),
.exists_gnt_o (/* keep open */),
.oup_id_i ( cnt_id_i ),
.oup_pop_i ( idq_oup_pop ),
.oup_req_i ( cnt_req_i ),
.oup_data_o ( cnt_r_idx ),
.oup_data_valid_o ( idq_oup_valid ),
.oup_gnt_o ( idq_oup_gnt )
);
assign idq_inp_req = alloc_req_i & alloc_gnt_o;
assign alloc_gnt_o = idq_inp_gnt & |(cnt_free);
assign cnt_gnt_o = idq_oup_gnt & idq_oup_valid;
logic [8:0] read_len;
assign read_len = cnt_oup[cnt_r_idx] - 1;
assign cnt_len_o = read_len[7:0];
assign idq_oup_pop = cnt_req_i & cnt_gnt_o & cnt_dec_i & (cnt_len_o == 8'd0);
always_comb begin
cnt_dec = '0;
cnt_dec[cnt_r_idx] = cnt_req_i & cnt_gnt_o & cnt_dec_i;
end
always_comb begin
cnt_set = '0;
cnt_set[cnt_free_idx] = alloc_req_i & alloc_gnt_o;
end
always_comb begin
err_d = err_q;
cnt_err_o = err_q[cnt_r_idx];
if (cnt_req_i && cnt_gnt_o && cnt_set_err_i) begin
err_d[cnt_r_idx] = 1'b1;
cnt_err_o = 1'b1;
end
if (alloc_req_i && alloc_gnt_o) begin
err_d[cnt_free_idx] = 1'b0;
end
end
// registers
`FFARN(err_q, err_d, '0, clk_i, rst_ni)
`ifndef VERILATOR
// pragma translate_off
assume property (@(posedge clk_i) idq_oup_gnt |-> idq_oup_valid)
else $warning("Invalid output at ID queue, read not granted!");
// pragma translate_on
`endif
endmodule